Ullmann, Sebastian ; Lang, Jens (2018)
Stochastic Galerkin reduced basis methods for parametrized linear elliptic PDEs.
In: SIAM / ASA Journal on Uncertainty Quantification, (submitted)
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
We consider the estimation of parameter-dependent statistics of functional outputs of elliptic boundary value problems with parametrized random and deterministic inputs. For a given value of the deterministic parameter, a stochastic Galerkin finite element (SGFE) method can estimate the corresponding expectation and variance of a linear output at the cost of a single solution of a large block-structured linear algebraic system of equations. We propose a stochastic Galerkin reduced basis (SGRB) method as a means to lower the computational burden when statistical outputs are required for a large number of deterministic parameter queries. To derive an SGRB model, we project the spatial-stochastic weak solution of a parameter-dependent SGFE model onto a POD reduced basis generated from snapshots of the SGFE solution at representative values of the parameter. We propose residual-corrected estimates of the parameter-dependent expectation and variance of linear functional outputs and provide respective computable error bounds. We test the SGRB method numerically for a convection-diffusion-reaction problem, choosing the convective velocity as a deterministic parameter and the parametrized reactivity field as a random input. Compared to a standard reduced basis model embedded in a Monte Carlo sampling procedure, the SGRB model requires a similar number of reduced basis functions to meet a given tolerance requirement. However, only a single run of the SGRB model suffices to estimate a statistical output for a new deterministic parameter value, while the standard reduced basis model must be solved for each Monte Carlo sample.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2018 |
Autor(en): | Ullmann, Sebastian ; Lang, Jens |
Art des Eintrags: | Bibliographie |
Titel: | Stochastic Galerkin reduced basis methods for parametrized linear elliptic PDEs |
Sprache: | Englisch |
Publikationsjahr: | 20 Dezember 2018 |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | SIAM / ASA Journal on Uncertainty Quantification |
(Heft-)Nummer: | submitted |
URL / URN: | https://arxiv.org/abs/1812.08519 |
Kurzbeschreibung (Abstract): | We consider the estimation of parameter-dependent statistics of functional outputs of elliptic boundary value problems with parametrized random and deterministic inputs. For a given value of the deterministic parameter, a stochastic Galerkin finite element (SGFE) method can estimate the corresponding expectation and variance of a linear output at the cost of a single solution of a large block-structured linear algebraic system of equations. We propose a stochastic Galerkin reduced basis (SGRB) method as a means to lower the computational burden when statistical outputs are required for a large number of deterministic parameter queries. To derive an SGRB model, we project the spatial-stochastic weak solution of a parameter-dependent SGFE model onto a POD reduced basis generated from snapshots of the SGFE solution at representative values of the parameter. We propose residual-corrected estimates of the parameter-dependent expectation and variance of linear functional outputs and provide respective computable error bounds. We test the SGRB method numerically for a convection-diffusion-reaction problem, choosing the convective velocity as a deterministic parameter and the parametrized reactivity field as a random input. Compared to a standard reduced basis model embedded in a Monte Carlo sampling procedure, the SGRB model requires a similar number of reduced basis functions to meet a given tolerance requirement. However, only a single run of the SGRB model suffices to estimate a statistical output for a new deterministic parameter value, while the standard reduced basis model must be solved for each Monte Carlo sample. |
Fachbereich(e)/-gebiet(e): | DFG-Sonderforschungsbereiche (inkl. Transregio) DFG-Sonderforschungsbereiche (inkl. Transregio) > Transregios DFG-Sonderforschungsbereiche (inkl. Transregio) > Transregios > TRR 154 Mathematische Modellierung, Simulation und Optimierung am Beispiel von Gasnetzwerken Exzellenzinitiative Exzellenzinitiative > Graduiertenschulen Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE) Exzellenzinitiative > Graduiertenschulen > Graduate School of Energy Science and Engineering (ESE) 04 Fachbereich Mathematik 04 Fachbereich Mathematik > Numerik und wissenschaftliches Rechnen |
Hinterlegungsdatum: | 20 Dez 2018 12:42 |
Letzte Änderung: | 30 Jun 2020 13:04 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |