TU Darmstadt / ULB / TUbiblio

Stochastic Galerkin reduced basis methods for parametrized linear elliptic PDEs

Ullmann, Sebastian ; Lang, Jens (2018)
Stochastic Galerkin reduced basis methods for parametrized linear elliptic PDEs.
In: SIAM / ASA Journal on Uncertainty Quantification, (submitted)
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

We consider the estimation of parameter-dependent statistics of functional outputs of elliptic boundary value problems with parametrized random and deterministic inputs. For a given value of the deterministic parameter, a stochastic Galerkin finite element (SGFE) method can estimate the corresponding expectation and variance of a linear output at the cost of a single solution of a large block-structured linear algebraic system of equations. We propose a stochastic Galerkin reduced basis (SGRB) method as a means to lower the computational burden when statistical outputs are required for a large number of deterministic parameter queries. To derive an SGRB model, we project the spatial-stochastic weak solution of a parameter-dependent SGFE model onto a POD reduced basis generated from snapshots of the SGFE solution at representative values of the parameter. We propose residual-corrected estimates of the parameter-dependent expectation and variance of linear functional outputs and provide respective computable error bounds. We test the SGRB method numerically for a convection-diffusion-reaction problem, choosing the convective velocity as a deterministic parameter and the parametrized reactivity field as a random input. Compared to a standard reduced basis model embedded in a Monte Carlo sampling procedure, the SGRB model requires a similar number of reduced basis functions to meet a given tolerance requirement. However, only a single run of the SGRB model suffices to estimate a statistical output for a new deterministic parameter value, while the standard reduced basis model must be solved for each Monte Carlo sample.

Typ des Eintrags: Artikel
Erschienen: 2018
Autor(en): Ullmann, Sebastian ; Lang, Jens
Art des Eintrags: Bibliographie
Titel: Stochastic Galerkin reduced basis methods for parametrized linear elliptic PDEs
Sprache: Englisch
Publikationsjahr: 20 Dezember 2018
Titel der Zeitschrift, Zeitung oder Schriftenreihe: SIAM / ASA Journal on Uncertainty Quantification
(Heft-)Nummer: submitted
URL / URN: https://arxiv.org/abs/1812.08519
Kurzbeschreibung (Abstract):

We consider the estimation of parameter-dependent statistics of functional outputs of elliptic boundary value problems with parametrized random and deterministic inputs. For a given value of the deterministic parameter, a stochastic Galerkin finite element (SGFE) method can estimate the corresponding expectation and variance of a linear output at the cost of a single solution of a large block-structured linear algebraic system of equations. We propose a stochastic Galerkin reduced basis (SGRB) method as a means to lower the computational burden when statistical outputs are required for a large number of deterministic parameter queries. To derive an SGRB model, we project the spatial-stochastic weak solution of a parameter-dependent SGFE model onto a POD reduced basis generated from snapshots of the SGFE solution at representative values of the parameter. We propose residual-corrected estimates of the parameter-dependent expectation and variance of linear functional outputs and provide respective computable error bounds. We test the SGRB method numerically for a convection-diffusion-reaction problem, choosing the convective velocity as a deterministic parameter and the parametrized reactivity field as a random input. Compared to a standard reduced basis model embedded in a Monte Carlo sampling procedure, the SGRB model requires a similar number of reduced basis functions to meet a given tolerance requirement. However, only a single run of the SGRB model suffices to estimate a statistical output for a new deterministic parameter value, while the standard reduced basis model must be solved for each Monte Carlo sample.

Fachbereich(e)/-gebiet(e): DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Transregios
DFG-Sonderforschungsbereiche (inkl. Transregio) > Transregios > TRR 154 Mathematische Modellierung, Simulation und Optimierung am Beispiel von Gasnetzwerken
Exzellenzinitiative
Exzellenzinitiative > Graduiertenschulen
Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE)
Exzellenzinitiative > Graduiertenschulen > Graduate School of Energy Science and Engineering (ESE)
04 Fachbereich Mathematik
04 Fachbereich Mathematik > Numerik und wissenschaftliches Rechnen
Hinterlegungsdatum: 20 Dez 2018 12:42
Letzte Änderung: 30 Jun 2020 13:04
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen