Urfels, Stephan (2018)
Synthese und Funktionalisierung magnetischer Nanopartikel.
Technische Universität Darmstadt
Dissertation, Erstveröffentlichung
Kurzbeschreibung (Abstract)
Magnetische Nanomaterialien sind aufgrund ihrer Anwendungsmöglichkeiten in Biotechnologie, Pharmazie, Katalyse und vielen weiteren Bereichen von Interesse. Die Kombination ihrer besonderen magnetischen Eigenschaften mit einer hohen spezifischen Oberfläche macht diese Materialien besonders für die selektive, magnetische Separation im Down-Stream-Processing biotechnologisch erzeugter Stoffe geeignet. Ziel der Arbeit war die Kontrolle der Partikelgröße und Größenverteilung bei der kontinuierlichen Synthese magnetischer Nanopartikel deren anschließende Funktionalisierung mit SiO2. Der Fokus lag hierbei in der Hochskalierung des Prozesses auf einen industriellen Maßstab. Hierzu wurde unter anderem die Kinetik der Magnetitsynthese durch Kopräzipitation von wässrigen Fe(II) und Fe(III) Lösungen mit gekoppelter Oxidation des Fe(II) untersucht und eine zuverlässige Methode zur Bestimmung der Partikelgrößenverteilung entwickelt. Dabei zeigte sich, dass bei der Synthese sehr breite Partikelgrößenverteilungen (/µ > 30%) und deutlich geringere Primärpartikelgrößen, als durch die Messergebnisse der spezifischen Oberfläche zu erwarten wäre, erzielt werden. Die numerische Simulation des Kristallisationsprozesses zeigte, dass der Fokussierungseffekt zu Beginn der Fällungsreaktion, praktisch keine Auswirkung auf die Magnetitbildung und damit auf die Erzielung einer engen Größenverteilung besitzt. Das Partikelwachstum und damit die Partikelgrößenverteilung wird maßgeblich durch einen koagulations- und Rekristallisationsmechanismus bestimmt. Zur Funktionalisierung wurde ein alternatives Verfahren zur kontrollierten Silikabeschichtung, das ohne einen Reinigungsschritt nach der Synthese auskommt, getestet. Durch die gezielte Beschichtung der Magnetit-Nanopartikel im Bereich von 0,5 bis 2,5 mg(SiO2) / m² kann der isoelektrische Punkt bis auf pH 3,5 kontrolliert abgesenkt und damit die DNA Bindekapazität der Partikel variiert werden.
Typ des Eintrags: | Dissertation | ||||
---|---|---|---|---|---|
Erschienen: | 2018 | ||||
Autor(en): | Urfels, Stephan | ||||
Art des Eintrags: | Erstveröffentlichung | ||||
Titel: | Synthese und Funktionalisierung magnetischer Nanopartikel | ||||
Sprache: | Deutsch | ||||
Referenten: | Vogel, Prof. Dr. Herbert ; Schneider, Prof. Dr. Jörg | ||||
Publikationsjahr: | 20 Juni 2018 | ||||
Ort: | Darmstadt | ||||
Datum der mündlichen Prüfung: | 15 Oktober 2018 | ||||
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/8247 | ||||
Kurzbeschreibung (Abstract): | Magnetische Nanomaterialien sind aufgrund ihrer Anwendungsmöglichkeiten in Biotechnologie, Pharmazie, Katalyse und vielen weiteren Bereichen von Interesse. Die Kombination ihrer besonderen magnetischen Eigenschaften mit einer hohen spezifischen Oberfläche macht diese Materialien besonders für die selektive, magnetische Separation im Down-Stream-Processing biotechnologisch erzeugter Stoffe geeignet. Ziel der Arbeit war die Kontrolle der Partikelgröße und Größenverteilung bei der kontinuierlichen Synthese magnetischer Nanopartikel deren anschließende Funktionalisierung mit SiO2. Der Fokus lag hierbei in der Hochskalierung des Prozesses auf einen industriellen Maßstab. Hierzu wurde unter anderem die Kinetik der Magnetitsynthese durch Kopräzipitation von wässrigen Fe(II) und Fe(III) Lösungen mit gekoppelter Oxidation des Fe(II) untersucht und eine zuverlässige Methode zur Bestimmung der Partikelgrößenverteilung entwickelt. Dabei zeigte sich, dass bei der Synthese sehr breite Partikelgrößenverteilungen (/µ > 30%) und deutlich geringere Primärpartikelgrößen, als durch die Messergebnisse der spezifischen Oberfläche zu erwarten wäre, erzielt werden. Die numerische Simulation des Kristallisationsprozesses zeigte, dass der Fokussierungseffekt zu Beginn der Fällungsreaktion, praktisch keine Auswirkung auf die Magnetitbildung und damit auf die Erzielung einer engen Größenverteilung besitzt. Das Partikelwachstum und damit die Partikelgrößenverteilung wird maßgeblich durch einen koagulations- und Rekristallisationsmechanismus bestimmt. Zur Funktionalisierung wurde ein alternatives Verfahren zur kontrollierten Silikabeschichtung, das ohne einen Reinigungsschritt nach der Synthese auskommt, getestet. Durch die gezielte Beschichtung der Magnetit-Nanopartikel im Bereich von 0,5 bis 2,5 mg(SiO2) / m² kann der isoelektrische Punkt bis auf pH 3,5 kontrolliert abgesenkt und damit die DNA Bindekapazität der Partikel variiert werden. |
||||
Alternatives oder übersetztes Abstract: |
|
||||
URN: | urn:nbn:de:tuda-tuprints-82472 | ||||
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 540 Chemie | ||||
Fachbereich(e)/-gebiet(e): | 07 Fachbereich Chemie 07 Fachbereich Chemie > Ernst-Berl-Institut > Fachgebiet Technische Chemie 07 Fachbereich Chemie > Ernst-Berl-Institut > Fachgebiet Technische Chemie > Technische Chemie I |
||||
Hinterlegungsdatum: | 16 Dez 2018 20:55 | ||||
Letzte Änderung: | 16 Dez 2018 20:55 | ||||
PPN: | |||||
Referenten: | Vogel, Prof. Dr. Herbert ; Schneider, Prof. Dr. Jörg | ||||
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 15 Oktober 2018 | ||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |