TU Darmstadt / ULB / TUbiblio

Adding a New Member to the MXene Family: Synthesis, Structure, and Electrocatalytic Activity for the Hydrogen Evolution Reaction of V4C3Tx

Tran, Minh H. ; Schäfer, Timo ; Shahraei, Ali ; Dürrschnabel, Michael ; Molina-Luna, Leopoldo ; Kramm, Ulrike I. ; Birkel, Christina S. (2018)
Adding a New Member to the MXene Family: Synthesis, Structure, and Electrocatalytic Activity for the Hydrogen Evolution Reaction of V4C3Tx.
In: ACS Applied Energy Materials, 1 (8)
doi: 10.1021/acsaem.8b00652
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Two-dimensional transition-metal-based carbides (or nitrides), so-called MXenes, that can be derived from the three-dimensional MAX phases, have attracted considerable attention throughout the past couple of years. The particular structure together with their hydrophilic and metallic nature make them promising candidates for a plethora of applications, such as sensors, electrodes, and catalysts. Obviously, the respective chemical and physical properties are highly dependent on the chemical composition, stoichiometry, and surface structure of the MXene. Here, we introduce a new member of the MXene family, V4C3Tx (T representing the surface groups), based on the chemical exfoliation of the 413 MAX phase V4AlC3 by treatment with aqueous hydrofluoric acid. X-ray powder diffraction data together with scale-bridging electron microscopy studies prove the successful removal of aluminum from the MAX phase structure. The electrocatalytic activity for the hydrogen evolution reaction of this new MXene is tested in acidic solution over the course of 100 cycles. Interestingly, we find a significant improvement of the catalytic performance over time (i.e., the overpotential required to achieve a current density of 10 mA cm–2 decreases by almost 200 mV) that we assign to the removal of an oxide species from the surface of the MXene, as shown by XPS measurements. Our study provides crucial experimental data of the electrocatalytic activity of MXenes together with the evolution of its surface structure that is also relevant for other transition-metal-based MXenes in the context of further potential applications.

Typ des Eintrags: Artikel
Erschienen: 2018
Autor(en): Tran, Minh H. ; Schäfer, Timo ; Shahraei, Ali ; Dürrschnabel, Michael ; Molina-Luna, Leopoldo ; Kramm, Ulrike I. ; Birkel, Christina S.
Art des Eintrags: Bibliographie
Titel: Adding a New Member to the MXene Family: Synthesis, Structure, and Electrocatalytic Activity for the Hydrogen Evolution Reaction of V4C3Tx
Sprache: Englisch
Publikationsjahr: 10 Juli 2018
Verlag: ACS Publications
Titel der Zeitschrift, Zeitung oder Schriftenreihe: ACS Applied Energy Materials
Jahrgang/Volume einer Zeitschrift: 1
(Heft-)Nummer: 8
DOI: 10.1021/acsaem.8b00652
URL / URN: http://pubs.acs.org/doi/10.1021/acsaem.8b00652
Kurzbeschreibung (Abstract):

Two-dimensional transition-metal-based carbides (or nitrides), so-called MXenes, that can be derived from the three-dimensional MAX phases, have attracted considerable attention throughout the past couple of years. The particular structure together with their hydrophilic and metallic nature make them promising candidates for a plethora of applications, such as sensors, electrodes, and catalysts. Obviously, the respective chemical and physical properties are highly dependent on the chemical composition, stoichiometry, and surface structure of the MXene. Here, we introduce a new member of the MXene family, V4C3Tx (T representing the surface groups), based on the chemical exfoliation of the 413 MAX phase V4AlC3 by treatment with aqueous hydrofluoric acid. X-ray powder diffraction data together with scale-bridging electron microscopy studies prove the successful removal of aluminum from the MAX phase structure. The electrocatalytic activity for the hydrogen evolution reaction of this new MXene is tested in acidic solution over the course of 100 cycles. Interestingly, we find a significant improvement of the catalytic performance over time (i.e., the overpotential required to achieve a current density of 10 mA cm–2 decreases by almost 200 mV) that we assign to the removal of an oxide species from the surface of the MXene, as shown by XPS measurements. Our study provides crucial experimental data of the electrocatalytic activity of MXenes together with the evolution of its surface structure that is also relevant for other transition-metal-based MXenes in the context of further potential applications.

Freie Schlagworte: carbides, electrocatalysis, hydrogen evolution reaction, MAX phase, MXene, V4AlC3, V4C3Tx
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Elektronenmikroskopie
07 Fachbereich Chemie > Eduard Zintl-Institut > Fachgebiet Anorganische Chemie > Fachgruppe Katalysatoren und Elektrokatalysatoren
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Theorie magnetischer Materialien
07 Fachbereich Chemie
07 Fachbereich Chemie > Eduard Zintl-Institut > Fachgebiet Anorganische Chemie
Hinterlegungsdatum: 10 Dez 2018 11:28
Letzte Änderung: 22 Feb 2023 12:48
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen