TU Darmstadt / ULB / TUbiblio

Controlling the Formation of Nanocavities in Kirkendall Nanoobjects through Sequential Thermal Ex Situ Oxidation and In Situ Reduction Reactions

El Mel, A.-A. ; Tessier, P.-Y. ; Buffiere, M. ; Gautron, E. ; Ding, J. ; Du, K. ; Choi, C.-H. ; Konstantinidis, S. ; Snyders, R. ; Bittencourt, C. ; Molina-Luna, Leopoldo (2016)
Controlling the Formation of Nanocavities in Kirkendall Nanoobjects through Sequential Thermal Ex Situ Oxidation and In Situ Reduction Reactions.
In: Small, 12 (21)
doi: 10.1002/smll.201600396
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Controlling the porosity, the shape, and the morphology of Kirkendall hollow nanostructures is the key factor to tune the properties of these tailor‐made nanomaterials which allow in turn broadening their applications. It is shown that by applying a continuous oxidation to copper nanowires following a temperature ramp protocol, one can synthesize cuprous oxide nanotubes containing periodic copper nanoparticles. A further oxidation of such nanoobjects allows obtaining cupric oxide nanotubes with a bamboo‐like structure. On the other hand, by applying a sequential oxidation and reduction reactions to copper nanowires, one can synthesize hollow nanoobjects with complex shapes and morphologies that cannot be obtained using the Kirkendall effect alone, such as necklace‐like cuprous oxide nanotubes, periodic solid copper nanoparticles or hollow cuprous oxide nanospheres interconnected with single crystal cuprous oxide nanorods, and aligned and periodic hollow nanospheres embedded in a cuprous oxide nanotube. The strategy demonstrated in this study opens new avenues for the engineering of hollow nanostructures with potential applications in gas sensing, catalysis, and energy storage.

Typ des Eintrags: Artikel
Erschienen: 2016
Autor(en): El Mel, A.-A. ; Tessier, P.-Y. ; Buffiere, M. ; Gautron, E. ; Ding, J. ; Du, K. ; Choi, C.-H. ; Konstantinidis, S. ; Snyders, R. ; Bittencourt, C. ; Molina-Luna, Leopoldo
Art des Eintrags: Bibliographie
Titel: Controlling the Formation of Nanocavities in Kirkendall Nanoobjects through Sequential Thermal Ex Situ Oxidation and In Situ Reduction Reactions
Sprache: Englisch
Publikationsjahr: 7 April 2016
Verlag: Wiley
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Small
Jahrgang/Volume einer Zeitschrift: 12
(Heft-)Nummer: 21
DOI: 10.1002/smll.201600396
Kurzbeschreibung (Abstract):

Controlling the porosity, the shape, and the morphology of Kirkendall hollow nanostructures is the key factor to tune the properties of these tailor‐made nanomaterials which allow in turn broadening their applications. It is shown that by applying a continuous oxidation to copper nanowires following a temperature ramp protocol, one can synthesize cuprous oxide nanotubes containing periodic copper nanoparticles. A further oxidation of such nanoobjects allows obtaining cupric oxide nanotubes with a bamboo‐like structure. On the other hand, by applying a sequential oxidation and reduction reactions to copper nanowires, one can synthesize hollow nanoobjects with complex shapes and morphologies that cannot be obtained using the Kirkendall effect alone, such as necklace‐like cuprous oxide nanotubes, periodic solid copper nanoparticles or hollow cuprous oxide nanospheres interconnected with single crystal cuprous oxide nanorods, and aligned and periodic hollow nanospheres embedded in a cuprous oxide nanotube. The strategy demonstrated in this study opens new avenues for the engineering of hollow nanostructures with potential applications in gas sensing, catalysis, and energy storage.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Elektronenmikroskopie
Hinterlegungsdatum: 10 Dez 2018 09:34
Letzte Änderung: 10 Dez 2018 09:34
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen