TU Darmstadt / ULB / TUbiblio

Atomic structure and domain wall pinning in samarium-cobalt based permanent magnets

Dürrschnabel, Michael ; Yi, M. ; Uestuener, K. ; Liesegang, M. ; Katter, M. ; Kleebe, Hans-Joachim ; Xu, Bai-Xiang ; Gutfleisch, Oliver ; Molina-Luna, Leopoldo (2017)
Atomic structure and domain wall pinning in samarium-cobalt based permanent magnets.
In: Nature communications, 8
doi: 10.1038/s41467-017-00059-9
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

A higher saturation magnetization obtained by an increased iron content is essential for yielding larger energy products in rare-earth Sm2Co17-type pinning-controlled permanent magnets. These are of importance for high-temperature industrial applications due to their intrinsic corrosion resistance and temperature stability. Here we present model magnets with an increased iron content based on a unique nanostructure and -chemical modification route using Fe, Cu, and Zr as dopants. The iron content controls the formation of a diamond-shaped cellular structure that dominates the density and strength of the domain wall pinning sites and thus the coercivity. Using ultra-high-resolution experimental and theoretical methods, we revealed the atomic structure of the single phases present and established a direct correlation to the macroscopic magnetic properties. With further development, this knowledge can be applied to produce samarium cobalt permanent magnets with improved magnetic performance.

Typ des Eintrags: Artikel
Erschienen: 2017
Autor(en): Dürrschnabel, Michael ; Yi, M. ; Uestuener, K. ; Liesegang, M. ; Katter, M. ; Kleebe, Hans-Joachim ; Xu, Bai-Xiang ; Gutfleisch, Oliver ; Molina-Luna, Leopoldo
Art des Eintrags: Bibliographie
Titel: Atomic structure and domain wall pinning in samarium-cobalt based permanent magnets
Sprache: Englisch
Publikationsjahr: 4 Juli 2017
Verlag: Nature
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Nature communications
Jahrgang/Volume einer Zeitschrift: 8
DOI: 10.1038/s41467-017-00059-9
Kurzbeschreibung (Abstract):

A higher saturation magnetization obtained by an increased iron content is essential for yielding larger energy products in rare-earth Sm2Co17-type pinning-controlled permanent magnets. These are of importance for high-temperature industrial applications due to their intrinsic corrosion resistance and temperature stability. Here we present model magnets with an increased iron content based on a unique nanostructure and -chemical modification route using Fe, Cu, and Zr as dopants. The iron content controls the formation of a diamond-shaped cellular structure that dominates the density and strength of the domain wall pinning sites and thus the coercivity. Using ultra-high-resolution experimental and theoretical methods, we revealed the atomic structure of the single phases present and established a direct correlation to the macroscopic magnetic properties. With further development, this knowledge can be applied to produce samarium cobalt permanent magnets with improved magnetic performance.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften > Fachgebiet Geomaterialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Elektronenmikroskopie
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Funktionale Materialien
Hinterlegungsdatum: 06 Dez 2018 10:16
Letzte Änderung: 26 Jan 2024 09:21
PPN:
Sponsoren: We acknowledge financial support from the Hessen State Ministry of Higher Education, Research and the Arts via LOEWE RESPONSE., The transmission electron microscopes used in this work were partially funded by the German Research Foundation (DFG/INST163/2951).
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen