TU Darmstadt / ULB / TUbiblio

PIRA: Performance Instrumentation Refinement Automation

Lehr, Jan-Patrick ; Hück, Alexander ; Bischof, Christian (2018)
PIRA: Performance Instrumentation Refinement Automation.
Proceedings of the 5th ACM SIGPLAN International Workshop on Artificial Intelligence and Empirical Methods for Software Engineering and Parallel Computing Systems. Boston, MA, USA
doi: 10.1145/3281070.3281071
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

In this paper we present PIRA – an infrastructure for automatic instrumentation refinement for performance analysis. It automates the generation of an initial performance overview measurement and gradually refines it, based on the recorded runtime information. This can help a performance analyst with the time consuming and largely manual, yet mechanical, task of selecting which functions to capture in subsequent measurements. PIRA implements an existing aggregation strategy that heuristically determines which functions to include for initial overview measurements. Moreover, it implements a newly developed heuristic to incorporate profile information and expand instrumentation in hot-spot regions only. The approach is evaluated on different benchmarks, including the SU 2 multi-physics solver package. PIRA is able to generate instrumentation configurations that contain the application’s hot-spot, but generate significantly less overhead when compared to the Score-P reference measurement.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2018
Autor(en): Lehr, Jan-Patrick ; Hück, Alexander ; Bischof, Christian
Art des Eintrags: Bibliographie
Titel: PIRA: Performance Instrumentation Refinement Automation
Sprache: Englisch
Publikationsjahr: 2018
Ort: New York, NY, USA
Verlag: ACM
Reihe: AI-SEPS 2018
Veranstaltungstitel: Proceedings of the 5th ACM SIGPLAN International Workshop on Artificial Intelligence and Empirical Methods for Software Engineering and Parallel Computing Systems
Veranstaltungsort: Boston, MA, USA
DOI: 10.1145/3281070.3281071
URL / URN: http://doi.acm.org/10.1145/3281070.3281071
Kurzbeschreibung (Abstract):

In this paper we present PIRA – an infrastructure for automatic instrumentation refinement for performance analysis. It automates the generation of an initial performance overview measurement and gradually refines it, based on the recorded runtime information. This can help a performance analyst with the time consuming and largely manual, yet mechanical, task of selecting which functions to capture in subsequent measurements. PIRA implements an existing aggregation strategy that heuristically determines which functions to include for initial overview measurements. Moreover, it implements a newly developed heuristic to incorporate profile information and expand instrumentation in hot-spot regions only. The approach is evaluated on different benchmarks, including the SU 2 multi-physics solver package. PIRA is able to generate instrumentation configurations that contain the application’s hot-spot, but generate significantly less overhead when compared to the Score-P reference measurement.

Freie Schlagworte: Score-P, automatic program instrumentation, high-performance computing, performance engineering
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Scientific Computing
Exzellenzinitiative
Exzellenzinitiative > Graduiertenschulen
Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE)
Zentrale Einrichtungen
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ)
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner
Hinterlegungsdatum: 26 Nov 2018 14:29
Letzte Änderung: 07 Jan 2021 10:08
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen