TU Darmstadt / ULB / TUbiblio

Correlation between Mechanical Strength of Amorphous TiO2 Nanotubes and Their Solid State Crystallization Pathways

Gao, Zhonghui ; Hao, Zhangxiang ; Yi, Min ; Huang, Ying ; Xu, Yiming ; Zhao, Ying ; Li, Zhaoyang ; Zhu, Shengli ; Xu, Bai-Xiang ; Liu, Porun ; Wang, Feng Ryan ; Huang, Yunhui ; Zhao, Huijun ; Yang, Xianjin :
Correlation between Mechanical Strength of Amorphous TiO2 Nanotubes and Their Solid State Crystallization Pathways.
In: Chemistry Select, 3 (38) S. 10711-10716.
[Artikel] , (2018)

Kurzbeschreibung (Abstract)

Developing TiO2 crystals with specific morphologies and nanostructured architectures is highly desirable in energy storage, conversion and catalysis applications. Thermally activated amorphous‐to‐crystal transition provides effective growth of poly or monocrystalline TiO2, while an in‐depth understanding of different crystallization pathways at the solid state is still lacking. Herein, we report a close correlation between mechanical strength of the TiO2 precursors and their different crystallization pathways. Two different morphologies, i. e., well‐defined anatase TiO2 single nanocrystals and anatase polycrystalline nanotubes are obtained via rapid heating of two amorphous TiO2 precursors with distinctive mechanical strengths. The mechanical‐strength‐dependent crystallization from amorphous solid‐state precursors provides additional control on the crystallization pathway and thus the desirable properties of the resultant nanostructures. In this study, the well‐defined anatase nanocrystals with controlled morphology show higher storage capacity of sodium ion than that of polycrystalline ones in sodium ion batteries.

Typ des Eintrags: Artikel
Erschienen: 2018
Autor(en): Gao, Zhonghui ; Hao, Zhangxiang ; Yi, Min ; Huang, Ying ; Xu, Yiming ; Zhao, Ying ; Li, Zhaoyang ; Zhu, Shengli ; Xu, Bai-Xiang ; Liu, Porun ; Wang, Feng Ryan ; Huang, Yunhui ; Zhao, Huijun ; Yang, Xianjin
Titel: Correlation between Mechanical Strength of Amorphous TiO2 Nanotubes and Their Solid State Crystallization Pathways
Sprache: Englisch
Kurzbeschreibung (Abstract):

Developing TiO2 crystals with specific morphologies and nanostructured architectures is highly desirable in energy storage, conversion and catalysis applications. Thermally activated amorphous‐to‐crystal transition provides effective growth of poly or monocrystalline TiO2, while an in‐depth understanding of different crystallization pathways at the solid state is still lacking. Herein, we report a close correlation between mechanical strength of the TiO2 precursors and their different crystallization pathways. Two different morphologies, i. e., well‐defined anatase TiO2 single nanocrystals and anatase polycrystalline nanotubes are obtained via rapid heating of two amorphous TiO2 precursors with distinctive mechanical strengths. The mechanical‐strength‐dependent crystallization from amorphous solid‐state precursors provides additional control on the crystallization pathway and thus the desirable properties of the resultant nanostructures. In this study, the well‐defined anatase nanocrystals with controlled morphology show higher storage capacity of sodium ion than that of polycrystalline ones in sodium ion batteries.

Titel der Zeitschrift, Zeitung oder Schriftenreihe: Chemistry Select
Band: 3
(Heft-)Nummer: 38
Verlag: Wiley
Freie Schlagworte: Mechanical strength, Na-ion battery, Nanoindentation, TiO2 nanotubes
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Mechanik Funktionaler Materialien
Hinterlegungsdatum: 26 Nov 2018 06:07
DOI: 10.1002/slct.201802588
Sponsoren: This work was financially supported by the China Postdoctoral Fund (0500229044), National Natural Science Foundation of China (51771131), the EPSRC First Grant project (EP/P02467X/1) and Royal Society research grant (RG160661).
Export:

Optionen (nur für Redakteure)

Eintrag anzeigen Eintrag anzeigen