TU Darmstadt / ULB / TUbiblio

Correlation between Mechanical Strength of Amorphous TiO2 Nanotubes and Their Solid State Crystallization Pathways

Gao, Zhonghui ; Hao, Zhangxiang ; Yi, Min ; Huang, Ying ; Xu, Yiming ; Zhao, Ying ; Li, Zhaoyang ; Zhu, Shengli ; Xu, Bai-Xiang ; Liu, Porun ; Wang, Feng Ryan ; Huang, Yunhui ; Zhao, Huijun ; Yang, Xianjin (2018)
Correlation between Mechanical Strength of Amorphous TiO2 Nanotubes and Their Solid State Crystallization Pathways.
In: Chemistry Select, 3 (38)
doi: 10.1002/slct.201802588
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Developing TiO2 crystals with specific morphologies and nanostructured architectures is highly desirable in energy storage, conversion and catalysis applications. Thermally activated amorphous‐to‐crystal transition provides effective growth of poly or monocrystalline TiO2, while an in‐depth understanding of different crystallization pathways at the solid state is still lacking. Herein, we report a close correlation between mechanical strength of the TiO2 precursors and their different crystallization pathways. Two different morphologies, i. e., well‐defined anatase TiO2 single nanocrystals and anatase polycrystalline nanotubes are obtained via rapid heating of two amorphous TiO2 precursors with distinctive mechanical strengths. The mechanical‐strength‐dependent crystallization from amorphous solid‐state precursors provides additional control on the crystallization pathway and thus the desirable properties of the resultant nanostructures. In this study, the well‐defined anatase nanocrystals with controlled morphology show higher storage capacity of sodium ion than that of polycrystalline ones in sodium ion batteries.

Typ des Eintrags: Artikel
Erschienen: 2018
Autor(en): Gao, Zhonghui ; Hao, Zhangxiang ; Yi, Min ; Huang, Ying ; Xu, Yiming ; Zhao, Ying ; Li, Zhaoyang ; Zhu, Shengli ; Xu, Bai-Xiang ; Liu, Porun ; Wang, Feng Ryan ; Huang, Yunhui ; Zhao, Huijun ; Yang, Xianjin
Art des Eintrags: Bibliographie
Titel: Correlation between Mechanical Strength of Amorphous TiO2 Nanotubes and Their Solid State Crystallization Pathways
Sprache: Englisch
Publikationsjahr: 16 Oktober 2018
Verlag: Wiley
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Chemistry Select
Jahrgang/Volume einer Zeitschrift: 3
(Heft-)Nummer: 38
DOI: 10.1002/slct.201802588
Kurzbeschreibung (Abstract):

Developing TiO2 crystals with specific morphologies and nanostructured architectures is highly desirable in energy storage, conversion and catalysis applications. Thermally activated amorphous‐to‐crystal transition provides effective growth of poly or monocrystalline TiO2, while an in‐depth understanding of different crystallization pathways at the solid state is still lacking. Herein, we report a close correlation between mechanical strength of the TiO2 precursors and their different crystallization pathways. Two different morphologies, i. e., well‐defined anatase TiO2 single nanocrystals and anatase polycrystalline nanotubes are obtained via rapid heating of two amorphous TiO2 precursors with distinctive mechanical strengths. The mechanical‐strength‐dependent crystallization from amorphous solid‐state precursors provides additional control on the crystallization pathway and thus the desirable properties of the resultant nanostructures. In this study, the well‐defined anatase nanocrystals with controlled morphology show higher storage capacity of sodium ion than that of polycrystalline ones in sodium ion batteries.

Freie Schlagworte: Mechanical strength, Na-ion battery, Nanoindentation, TiO2 nanotubes
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Mechanik Funktionaler Materialien
Hinterlegungsdatum: 26 Nov 2018 06:07
Letzte Änderung: 26 Jan 2024 09:21
PPN:
Sponsoren: This work was financially supported by the China Postdoctoral Fund (0500229044), National Natural Science Foundation of China (51771131), the EPSRC First Grant project (EP/P02467X/1) and Royal Society research grant (RG160661).
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen