TU Darmstadt / ULB / TUbiblio

Asymptotic modelling of conductive thin sheets

Schmidt, Kersten ; Tordeux, Sébastien (2010)
Asymptotic modelling of conductive thin sheets.
In: Z. Angew. Math. Phys., 61 (4)
doi: 10.1007/s00033-009-0043-x
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

We derive and analyse models which reduce conducting sheets of a small thickness~\eps in two dimensions to an interface and approximate their shielding behaviour by conditions on this interface. For this we consider a model problem with a conductivity scaled reciprocal to the thickness~\eps, which leads a nontrivial limit solution for~\eps\to0. The functions of the expansion are defined hierarchically, i.e. order by order. Our analysis shows that for smooth sheets the models are well defined for any order and have optimal convergence meaning that the H¹-modelling error for an expansion with ℕ~terms is bounded by~O(\epsN+1) in the exterior of the sheet and by O(\epsN+1/2) in its interior. We explicitely specify the models of order zero, one and two. Numerical experiments for sheets with varying curvature validate the theoretical results.

Typ des Eintrags: Artikel
Erschienen: 2010
Autor(en): Schmidt, Kersten ; Tordeux, Sébastien
Art des Eintrags: Bibliographie
Titel: Asymptotic modelling of conductive thin sheets
Sprache: Englisch
Publikationsjahr: August 2010
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Z. Angew. Math. Phys.
Jahrgang/Volume einer Zeitschrift: 61
(Heft-)Nummer: 4
DOI: 10.1007/s00033-009-0043-x
Kurzbeschreibung (Abstract):

We derive and analyse models which reduce conducting sheets of a small thickness~\eps in two dimensions to an interface and approximate their shielding behaviour by conditions on this interface. For this we consider a model problem with a conductivity scaled reciprocal to the thickness~\eps, which leads a nontrivial limit solution for~\eps\to0. The functions of the expansion are defined hierarchically, i.e. order by order. Our analysis shows that for smooth sheets the models are well defined for any order and have optimal convergence meaning that the H¹-modelling error for an expansion with ℕ~terms is bounded by~O(\epsN+1) in the exterior of the sheet and by O(\epsN+1/2) in its interior. We explicitely specify the models of order zero, one and two. Numerical experiments for sheets with varying curvature validate the theoretical results.

Fachbereich(e)/-gebiet(e): 04 Fachbereich Mathematik
04 Fachbereich Mathematik > Numerik und wissenschaftliches Rechnen
Hinterlegungsdatum: 19 Nov 2018 21:49
Letzte Änderung: 19 Nov 2018 21:49
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen