TU Darmstadt / ULB / TUbiblio

An analysis of Feng's and other symmetric local absorbing boundary conditions

Schmidt, Kersten ; Heier, Christian :
An analysis of Feng's and other symmetric local absorbing boundary conditions.
[Online-Edition: http://dx.doi.org/10.1051/m2an/2014029]
In: ESAIM: Math. Model. Numer. Anal., 49 (1) S. 257-273.
[Artikel] , (2015)

Offizielle URL: http://dx.doi.org/10.1051/m2an/2014029

Kurzbeschreibung (Abstract)

With symmetric local absorbing boundary conditions for the Helmholtz equation scattering problems can be solved on a truncated domain, where the outgoing radiation condition is approximated by a Dirichlet-to-Neumann map with higher tangential derivatives on its outer boundary. Feng's conditions are symmetric local absorbing boundary conditions, which are based on an asymptotic expansion of the coefficients of the exact Dirichlet-to-Neumann map for large radia of the circular outer boundary. In this article we analyse the well-posedness of variational formulations with symmetric local absorbing boundary conditions in general and show how the modelling error introduced by Feng's conditions depends on the radius of the truncated domain.

Typ des Eintrags: Artikel
Erschienen: 2015
Autor(en): Schmidt, Kersten ; Heier, Christian
Titel: An analysis of Feng's and other symmetric local absorbing boundary conditions
Sprache: Englisch
Kurzbeschreibung (Abstract):

With symmetric local absorbing boundary conditions for the Helmholtz equation scattering problems can be solved on a truncated domain, where the outgoing radiation condition is approximated by a Dirichlet-to-Neumann map with higher tangential derivatives on its outer boundary. Feng's conditions are symmetric local absorbing boundary conditions, which are based on an asymptotic expansion of the coefficients of the exact Dirichlet-to-Neumann map for large radia of the circular outer boundary. In this article we analyse the well-posedness of variational formulations with symmetric local absorbing boundary conditions in general and show how the modelling error introduced by Feng's conditions depends on the radius of the truncated domain.

Titel der Zeitschrift, Zeitung oder Schriftenreihe: ESAIM: Math. Model. Numer. Anal.
Band: 49
(Heft-)Nummer: 1
Fachbereich(e)/-gebiet(e): 04 Fachbereich Mathematik
04 Fachbereich Mathematik > Numerik und wissenschaftliches Rechnen
Hinterlegungsdatum: 19 Nov 2018 21:24
DOI: 10.1051/m2an/2014029
Offizielle URL: http://dx.doi.org/10.1051/m2an/2014029
Export:

Optionen (nur für Redakteure)

Eintrag anzeigen Eintrag anzeigen