TU Darmstadt / ULB / TUbiblio

Asymptotic boundary element methods for thin conducting sheets

Schmidt, Kersten ; Hiptmair, Ralf :
Asymptotic boundary element methods for thin conducting sheets.
In: Discrete Contin. Dyn. Syst. Ser. S, 8 (3) S. 619-647.
[Artikel] , (2015)

Kurzbeschreibung (Abstract)

Various asymptotic models for thin conducting sheets in computational electromagnetics describe them as closed hyper-surfaces equipped with linear local transmission conditions for the traces of electric and magnetic fields. The transmission conditions turn out to be singularly perturbed with respect to limit values of parameters depending on sheet thickness and conductivity. We consider the reformulation of the resulting transmission problems into boundary integral equations (BIE) and their Galerkin discretization by means of low-order boundary elements. We establish stability of the BIE and provide a priori h-convergence estimates.

Typ des Eintrags: Artikel
Erschienen: 2015
Autor(en): Schmidt, Kersten ; Hiptmair, Ralf
Titel: Asymptotic boundary element methods for thin conducting sheets
Sprache: Englisch
Kurzbeschreibung (Abstract):

Various asymptotic models for thin conducting sheets in computational electromagnetics describe them as closed hyper-surfaces equipped with linear local transmission conditions for the traces of electric and magnetic fields. The transmission conditions turn out to be singularly perturbed with respect to limit values of parameters depending on sheet thickness and conductivity. We consider the reformulation of the resulting transmission problems into boundary integral equations (BIE) and their Galerkin discretization by means of low-order boundary elements. We establish stability of the BIE and provide a priori h-convergence estimates.

Titel der Zeitschrift, Zeitung oder Schriftenreihe: Discrete Contin. Dyn. Syst. Ser. S
Band: 8
(Heft-)Nummer: 3
Fachbereich(e)/-gebiet(e): 04 Fachbereich Mathematik
04 Fachbereich Mathematik > Numerik und wissenschaftliches Rechnen
Hinterlegungsdatum: 19 Nov 2018 21:22
DOI: 10.3934/dcdss.2015.8.619
Export:

Optionen (nur für Redakteure)

Eintrag anzeigen Eintrag anzeigen