TU Darmstadt / ULB / TUbiblio

Asymptotic boundary element methods for thin conducting sheets

Schmidt, Kersten ; Hiptmair, Ralf (2015)
Asymptotic boundary element methods for thin conducting sheets.
In: Discrete Contin. Dyn. Syst. Ser. S, 8 (3)
doi: 10.3934/dcdss.2015.8.619
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Various asymptotic models for thin conducting sheets in computational electromagnetics describe them as closed hyper-surfaces equipped with linear local transmission conditions for the traces of electric and magnetic fields. The transmission conditions turn out to be singularly perturbed with respect to limit values of parameters depending on sheet thickness and conductivity. We consider the reformulation of the resulting transmission problems into boundary integral equations (BIE) and their Galerkin discretization by means of low-order boundary elements. We establish stability of the BIE and provide a priori h-convergence estimates.

Typ des Eintrags: Artikel
Erschienen: 2015
Autor(en): Schmidt, Kersten ; Hiptmair, Ralf
Art des Eintrags: Bibliographie
Titel: Asymptotic boundary element methods for thin conducting sheets
Sprache: Englisch
Publikationsjahr: 2015
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Discrete Contin. Dyn. Syst. Ser. S
Jahrgang/Volume einer Zeitschrift: 8
(Heft-)Nummer: 3
DOI: 10.3934/dcdss.2015.8.619
Kurzbeschreibung (Abstract):

Various asymptotic models for thin conducting sheets in computational electromagnetics describe them as closed hyper-surfaces equipped with linear local transmission conditions for the traces of electric and magnetic fields. The transmission conditions turn out to be singularly perturbed with respect to limit values of parameters depending on sheet thickness and conductivity. We consider the reformulation of the resulting transmission problems into boundary integral equations (BIE) and their Galerkin discretization by means of low-order boundary elements. We establish stability of the BIE and provide a priori h-convergence estimates.

Fachbereich(e)/-gebiet(e): 04 Fachbereich Mathematik
04 Fachbereich Mathematik > Numerik und wissenschaftliches Rechnen
Hinterlegungsdatum: 19 Nov 2018 21:22
Letzte Änderung: 19 Nov 2018 21:22
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen