Schmidt, Kersten ; Hiptmair, Ralf (2015)
Asymptotic boundary element methods for thin conducting sheets.
In: Discrete Contin. Dyn. Syst. Ser. S, 8 (3)
doi: 10.3934/dcdss.2015.8.619
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Various asymptotic models for thin conducting sheets in computational electromagnetics describe them as closed hyper-surfaces equipped with linear local transmission conditions for the traces of electric and magnetic fields. The transmission conditions turn out to be singularly perturbed with respect to limit values of parameters depending on sheet thickness and conductivity. We consider the reformulation of the resulting transmission problems into boundary integral equations (BIE) and their Galerkin discretization by means of low-order boundary elements. We establish stability of the BIE and provide a priori h-convergence estimates.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2015 |
Autor(en): | Schmidt, Kersten ; Hiptmair, Ralf |
Art des Eintrags: | Bibliographie |
Titel: | Asymptotic boundary element methods for thin conducting sheets |
Sprache: | Englisch |
Publikationsjahr: | 2015 |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Discrete Contin. Dyn. Syst. Ser. S |
Jahrgang/Volume einer Zeitschrift: | 8 |
(Heft-)Nummer: | 3 |
DOI: | 10.3934/dcdss.2015.8.619 |
Kurzbeschreibung (Abstract): | Various asymptotic models for thin conducting sheets in computational electromagnetics describe them as closed hyper-surfaces equipped with linear local transmission conditions for the traces of electric and magnetic fields. The transmission conditions turn out to be singularly perturbed with respect to limit values of parameters depending on sheet thickness and conductivity. We consider the reformulation of the resulting transmission problems into boundary integral equations (BIE) and their Galerkin discretization by means of low-order boundary elements. We establish stability of the BIE and provide a priori h-convergence estimates. |
Fachbereich(e)/-gebiet(e): | 04 Fachbereich Mathematik 04 Fachbereich Mathematik > Numerik und wissenschaftliches Rechnen |
Hinterlegungsdatum: | 19 Nov 2018 21:22 |
Letzte Änderung: | 19 Nov 2018 21:22 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |