TU Darmstadt / ULB / TUbiblio

Quasi-interpolation by Quadratic C1-Splines on Truncated Octahedral Partitions

Rhein, Markus ; Kalbe, Thomas (2009)
Quasi-interpolation by Quadratic C1-Splines on Truncated Octahedral Partitions.
In: Computer Aided Geometric Design, 26 (8)
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

We describe an approximating scheme for the smooth reconstruction of discrete data on volumetric grids. A local quasi-interpolation method for quadratic C1-splines on uniform tetrahedral partitions is used to achieve a globally smooth function. The Bernstein-Bézier coefficients of the piecewise polynomials are thereby directly determined by appropriate combinations of the data values. We explicitly give a construction scheme for a family of quasi-interpolation operators and prove that the splines and their derivatives can provide an approximation order two for smooth functions. The optimal approximation of the derivatives and the simple averaging rules for the coefficients recommend this method for high quality visualization of volume data. Numerical tests confirm the approximation properties and show the efficient computation of the splines.

Typ des Eintrags: Artikel
Erschienen: 2009
Autor(en): Rhein, Markus ; Kalbe, Thomas
Art des Eintrags: Bibliographie
Titel: Quasi-interpolation by Quadratic C1-Splines on Truncated Octahedral Partitions
Sprache: Englisch
Publikationsjahr: 2009
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Computer Aided Geometric Design
Jahrgang/Volume einer Zeitschrift: 26
(Heft-)Nummer: 8
Kurzbeschreibung (Abstract):

We describe an approximating scheme for the smooth reconstruction of discrete data on volumetric grids. A local quasi-interpolation method for quadratic C1-splines on uniform tetrahedral partitions is used to achieve a globally smooth function. The Bernstein-Bézier coefficients of the piecewise polynomials are thereby directly determined by appropriate combinations of the data values. We explicitly give a construction scheme for a family of quasi-interpolation operators and prove that the splines and their derivatives can provide an approximation order two for smooth functions. The optimal approximation of the derivatives and the simple averaging rules for the coefficients recommend this method for high quality visualization of volume data. Numerical tests confirm the approximation properties and show the efficient computation of the splines.

Freie Schlagworte: Visualization, Trivariate splines, Volume data, Approximation
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 12 Nov 2018 11:16
Letzte Änderung: 12 Nov 2018 11:16
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen