TU Darmstadt / ULB / TUbiblio

Propagation of Shape Parameterisation for the Construction of a Statistical Shape Model of the Left Ventricle

Kirschner, Matthias ; Wesarg, Stefan (2009)
Propagation of Shape Parameterisation for the Construction of a Statistical Shape Model of the Left Ventricle.
Proceedings of the Vision, Modeling, and Visualization Workshop 2009.
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Statistical Shape Models (SSMs) have been successfully applied to both segmentation and the description of the dynamic behaviour of the heart. SSMs are learned from a set of training examples, which are represented by vectors of corresponding landmarks. While the construction of a SSMis simple when a landmark representation of the training shapes is available, the extraction of corresponding landmarks from training images or meshes of different sizes is difficult. Optimisation schemes that solve this so-called correspondence problem rely on a parameter space representation of the input shapes. These optimisation schemes tend to be sensitive to the initial parameterisation of the input shapes. In this work, we present an algorithm to produce a consistent spherical parameterisation for shapes of the left ventricle. Our algorithm propagates the spherical parameterisation of a root shape within seconds to all other shapes. We demonstrate the effectiveness of our approach by extracting a SSM from the parameterisations generated by our algorithm.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2009
Autor(en): Kirschner, Matthias ; Wesarg, Stefan
Art des Eintrags: Bibliographie
Titel: Propagation of Shape Parameterisation for the Construction of a Statistical Shape Model of the Left Ventricle
Sprache: Englisch
Publikationsjahr: 2009
Verlag: Otto-von-Guericke-Universität, Magdeburg
Veranstaltungstitel: Proceedings of the Vision, Modeling, and Visualization Workshop 2009
Kurzbeschreibung (Abstract):

Statistical Shape Models (SSMs) have been successfully applied to both segmentation and the description of the dynamic behaviour of the heart. SSMs are learned from a set of training examples, which are represented by vectors of corresponding landmarks. While the construction of a SSMis simple when a landmark representation of the training shapes is available, the extraction of corresponding landmarks from training images or meshes of different sizes is difficult. Optimisation schemes that solve this so-called correspondence problem rely on a parameter space representation of the input shapes. These optimisation schemes tend to be sensitive to the initial parameterisation of the input shapes. In this work, we present an algorithm to produce a consistent spherical parameterisation for shapes of the left ventricle. Our algorithm propagates the spherical parameterisation of a root shape within seconds to all other shapes. We demonstrate the effectiveness of our approach by extracting a SSM from the parameterisations generated by our algorithm.

Freie Schlagworte: Forschungsgruppe Medical Computing (MECO), Surface parameterization, Model based segmentations, Statistical shape models (SSM), Medical image processing, Point correspondence, Cardiology
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 12 Nov 2018 11:16
Letzte Änderung: 12 Nov 2018 11:16
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen