TU Darmstadt / ULB / TUbiblio

Area Preserving Parameterisation of Shapes with Spherical Topology

Kirschner, Matthias ; Wesarg, Stefan (2009)
Area Preserving Parameterisation of Shapes with Spherical Topology.
Informatik 2009. Im Focus das Leben.
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Statistical shape models are powerful tools for model-based segmentation and have been successfully applied to the segmentation of various structures in medical images. Though the segmentation algorithms based on statistical shape models are simple, finding corresponding landmarks for the construction of the models is a challenging optimisation task. State-of-the-art algorithms that solve the correspondence problem require a representation of the training shapes in a suitable parameter space. The mapping of a shape to a parameter space can introduce large area distortions so that simple sampling techniques can not reconstruct the original shapes sufficiently well. In this paper, we propose an algorithm to construct area preserving parameterisations of shapes with spherical topology. Using our approach, good reconstructions of the original shapes can be achieved by uniform sampling. In contrast to previously published methods that use a black box optimisation approach, we exploit knowledge about the shortcomings of initial parameterisations.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2009
Autor(en): Kirschner, Matthias ; Wesarg, Stefan
Art des Eintrags: Bibliographie
Titel: Area Preserving Parameterisation of Shapes with Spherical Topology
Sprache: Englisch
Publikationsjahr: 2009
Verlag: Gesellschaft für Informatik, Bonn
Reihe: GI-Edition - Lecture Notes in Informatics (LNI); P-154
Veranstaltungstitel: Informatik 2009. Im Focus das Leben
Kurzbeschreibung (Abstract):

Statistical shape models are powerful tools for model-based segmentation and have been successfully applied to the segmentation of various structures in medical images. Though the segmentation algorithms based on statistical shape models are simple, finding corresponding landmarks for the construction of the models is a challenging optimisation task. State-of-the-art algorithms that solve the correspondence problem require a representation of the training shapes in a suitable parameter space. The mapping of a shape to a parameter space can introduce large area distortions so that simple sampling techniques can not reconstruct the original shapes sufficiently well. In this paper, we propose an algorithm to construct area preserving parameterisations of shapes with spherical topology. Using our approach, good reconstructions of the original shapes can be achieved by uniform sampling. In contrast to previously published methods that use a black box optimisation approach, we exploit knowledge about the shortcomings of initial parameterisations.

Freie Schlagworte: Forschungsgruppe Medical Computing (MECO), Surface parameterization, Model based segmentations, Statistical shape models (SSM), Point correspondence
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 12 Nov 2018 11:16
Letzte Änderung: 12 Nov 2018 11:16
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen