Hildenbrand, Dietmar ; Pitt, Joachim ; Koch, Andreas (2010)
Gaalop - High Performance Parallel Computing based on Conformal Geometric Algebra.
Buchkapitel, Bibliographie
Kurzbeschreibung (Abstract)
We present Gaalop (Geometric algebra algorithms optimizer) our tool for high performance computing based on conformal geometric algebra. The main goal of Gaalop is to realize implementations that are most likely faster than conventional solutions. In order to achieve this goal, our focus is on parallel target platforms like FPGA (field-programmable gate arrays) or the CUDA technology from NVIDIA. We describe the concepts, the current status, as well as the future perspectives of Gaalop dealing with optimized software implementations, hardware implementations as well as mixed solutions. An inverse kinematics algorithm of a humanoid robot is described as an example.
Typ des Eintrags: | Buchkapitel |
---|---|
Erschienen: | 2010 |
Autor(en): | Hildenbrand, Dietmar ; Pitt, Joachim ; Koch, Andreas |
Art des Eintrags: | Bibliographie |
Titel: | Gaalop - High Performance Parallel Computing based on Conformal Geometric Algebra |
Sprache: | Englisch |
Publikationsjahr: | 2010 |
Verlag: | Springer, Berlin, Heidelberg, New York |
Kurzbeschreibung (Abstract): | We present Gaalop (Geometric algebra algorithms optimizer) our tool for high performance computing based on conformal geometric algebra. The main goal of Gaalop is to realize implementations that are most likely faster than conventional solutions. In order to achieve this goal, our focus is on parallel target platforms like FPGA (field-programmable gate arrays) or the CUDA technology from NVIDIA. We describe the concepts, the current status, as well as the future perspectives of Gaalop dealing with optimized software implementations, hardware implementations as well as mixed solutions. An inverse kinematics algorithm of a humanoid robot is described as an example. |
Freie Schlagworte: | Forschungsgruppe Geometric Algebra Computing (GACO), Geometric computing, Geometric algebra (GA), Approximation |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Graphisch-Interaktive Systeme |
Hinterlegungsdatum: | 12 Nov 2018 11:16 |
Letzte Änderung: | 12 Nov 2018 11:16 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |