TU Darmstadt / ULB / TUbiblio

Cluster Correspondence Views for Enhanced Analysis of SOM Displays

Bernard, Jürgen ; Landesberger von Antburg, Tatiana ; Bremm, Sebastian ; Schreck, Tobias (2010)
Cluster Correspondence Views for Enhanced Analysis of SOM Displays.
IEEE Conference on Visual Analytics Science and Technology 2010. Proceedings.
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

The Self-Organizing Map (SOM) algorithm is a popular and widely used cluster algorithm. Its constraint to organize clusters on a grid structure makes it very amenable to visualization. On the other hand, the grid constraint may lead to reduced cluster accuracy and reliability, compared to other clustering methods not implementing this restriction. We propose a visual cluster analysis system that allows to validate the output of the SOM algorithm by comparison with alternative clustering methods. Specifically, visual mappings overlaying alternative clustering results onto the SOM are proposed. We apply our system on an example data set, and outline main analytical use cases.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2010
Autor(en): Bernard, Jürgen ; Landesberger von Antburg, Tatiana ; Bremm, Sebastian ; Schreck, Tobias
Art des Eintrags: Bibliographie
Titel: Cluster Correspondence Views for Enhanced Analysis of SOM Displays
Sprache: Englisch
Publikationsjahr: 2010
Verlag: IEEE Press, New York
Veranstaltungstitel: IEEE Conference on Visual Analytics Science and Technology 2010. Proceedings
Kurzbeschreibung (Abstract):

The Self-Organizing Map (SOM) algorithm is a popular and widely used cluster algorithm. Its constraint to organize clusters on a grid structure makes it very amenable to visualization. On the other hand, the grid constraint may lead to reduced cluster accuracy and reliability, compared to other clustering methods not implementing this restriction. We propose a visual cluster analysis system that allows to validate the output of the SOM algorithm by comparison with alternative clustering methods. Specifically, visual mappings overlaying alternative clustering results onto the SOM are proposed. We apply our system on an example data set, and outline main analytical use cases.

Freie Schlagworte: Forschungsgruppe Visual Search and Analysis (VISA), Visual analytics, Cluster analysis, Self-organizing maps (SOM), Quality measurements
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 12 Nov 2018 11:16
Letzte Änderung: 22 Jul 2021 18:31
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen