TU Darmstadt / ULB / TUbiblio

3D Human Action Recognition Using Model Segmentation

Yoon, Sang Min ; Kuijper, Arjan (2010)
3D Human Action Recognition Using Model Segmentation.
Image Analysis and Recognition. Proceedings, Part I.
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

This paper addresses a learning-based human action recognition system from multiple images based on integrating features of segmented 3D human body parts such as face, torso, and limbs. The innovation of our proposed 3D human action recognition system consists of three parts: (1) 3D reconstruction of the target object by tracking the position of a target object in a scene to voxelize the accurate 3D human model, (2) Human body model segmentation into several human body parts using ellipsoidal models in the space of second-order three dimensional diffusion tensor fields, and (3) Classification and recognition of human actions from features of the segmented human model using Multiple-Kernel based Support Vector Machine. Experimental results on a set of test volume data show that our proposed method is very efficient to visualize and recognize the human action using few parameters which are independent to partial occlusion, dimension, and viewpoint.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2010
Autor(en): Yoon, Sang Min ; Kuijper, Arjan
Art des Eintrags: Bibliographie
Titel: 3D Human Action Recognition Using Model Segmentation
Sprache: Englisch
Publikationsjahr: 2010
Verlag: Springer, Berlin; Heidelberg; New York
Reihe: Lecture Notes in Computer Science (LNCS); 6111
Veranstaltungstitel: Image Analysis and Recognition. Proceedings, Part I
Kurzbeschreibung (Abstract):

This paper addresses a learning-based human action recognition system from multiple images based on integrating features of segmented 3D human body parts such as face, torso, and limbs. The innovation of our proposed 3D human action recognition system consists of three parts: (1) 3D reconstruction of the target object by tracking the position of a target object in a scene to voxelize the accurate 3D human model, (2) Human body model segmentation into several human body parts using ellipsoidal models in the space of second-order three dimensional diffusion tensor fields, and (3) Classification and recognition of human actions from features of the segmented human model using Multiple-Kernel based Support Vector Machine. Experimental results on a set of test volume data show that our proposed method is very efficient to visualize and recognize the human action using few parameters which are independent to partial occlusion, dimension, and viewpoint.

Freie Schlagworte: 3D Model segmentation, Human action recognition, Human models, Diffusion tensor fields
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 12 Nov 2018 11:16
Letzte Änderung: 12 Nov 2018 11:16
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen