TU Darmstadt / ULB / TUbiblio

Linear Algorithms in Sublinear Time - a Tutorial on Statistical Estimation

Ullrich, Torsten ; Fellner, Dieter W. (2011)
Linear Algorithms in Sublinear Time - a Tutorial on Statistical Estimation.
In: IEEE Computer Graphics and Applications, 31 (2)
doi: 10.1109/MCG.2010.21
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

This tutorial presents probability theory techniques for boosting linear algorithms. The approach is based on statistics and uses educated guesses instead of comprehensive calculations. Because estimates can be calculated in sublinear time, many algorithms can benefit from statistical estimation. Several examples show how to significantly boost linear algorithms without negative effects on their results. These examples involve a Ransac algorithm, an image-processing algorithm, and a geometrical reconstruction. The approach exploits that, in many cases, the amount of information in a dataset increases asymptotically sublinearly if its size or sampling density increases. Conversely, an algorithm with expected sublinear running time can extract the most information.

Typ des Eintrags: Artikel
Erschienen: 2011
Autor(en): Ullrich, Torsten ; Fellner, Dieter W.
Art des Eintrags: Bibliographie
Titel: Linear Algorithms in Sublinear Time - a Tutorial on Statistical Estimation
Sprache: Englisch
Publikationsjahr: 2011
Titel der Zeitschrift, Zeitung oder Schriftenreihe: IEEE Computer Graphics and Applications
Jahrgang/Volume einer Zeitschrift: 31
(Heft-)Nummer: 2
DOI: 10.1109/MCG.2010.21
Kurzbeschreibung (Abstract):

This tutorial presents probability theory techniques for boosting linear algorithms. The approach is based on statistics and uses educated guesses instead of comprehensive calculations. Because estimates can be calculated in sublinear time, many algorithms can benefit from statistical estimation. Several examples show how to significantly boost linear algorithms without negative effects on their results. These examples involve a Ransac algorithm, an image-processing algorithm, and a geometrical reconstruction. The approach exploits that, in many cases, the amount of information in a dataset increases asymptotically sublinearly if its size or sampling density increases. Conversely, an algorithm with expected sublinear running time can extract the most information.

Freie Schlagworte: Forschungsgruppe Semantic Models, Immersive Systems (SMIS), Business Field: Virtual engineering, Research Area: Confluence of graphics and vision, Research Area: Semantics in the modeling process, Computer graphics, Algorithms, Statistics, Optimization, Statistical computing, Algorithm boosting
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 12 Nov 2018 11:16
Letzte Änderung: 04 Feb 2022 12:40
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen