TU Darmstadt / ULB / TUbiblio

Guiding Feature Subset Selection with an Interactive Visualization

May, Thorsten ; Bannach, Andreas ; Davey, James ; Ruppert, Tobias ; Kohlhammer, Jörn (2011)
Guiding Feature Subset Selection with an Interactive Visualization.
IEEE Conference on Visual Analytics Science and Technology 2011. Proceedings.
doi: 10.1109/VAST.2011.6102448
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

We propose a method for the semi-automated refinement of the results of feature subset selection algorithms. Feature subset selection is a preliminary step in data analysis which identifies the most useful subset of features (columns) in a data table. So-called filter techniques use statistical ranking measures for the correlation of features. Usually a measure is applied to all entities (rows) of a data table. However, the differing contributions of subsets of data entities are masked by statistical aggregation. Feature and entity subset selection are, thus, highly interdependent. Due to the difficulty in visualizing a high-dimensional data table, most feature subset selection algorithms are applied as a black box at the outset of an analysis. Our visualization technique, SmartStripes, allows users to step into the feature subset selection process. It enables the investigation of dependencies and interdependencies between different feature and entity subsets. A user may even choose to control the iterations manually, taking into account the ranking measures, the contributions of different entity subsets, as well as the semantics of the features.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2011
Autor(en): May, Thorsten ; Bannach, Andreas ; Davey, James ; Ruppert, Tobias ; Kohlhammer, Jörn
Art des Eintrags: Bibliographie
Titel: Guiding Feature Subset Selection with an Interactive Visualization
Sprache: Englisch
Publikationsjahr: 2011
Verlag: IEEE Press, New York
Veranstaltungstitel: IEEE Conference on Visual Analytics Science and Technology 2011. Proceedings
DOI: 10.1109/VAST.2011.6102448
Kurzbeschreibung (Abstract):

We propose a method for the semi-automated refinement of the results of feature subset selection algorithms. Feature subset selection is a preliminary step in data analysis which identifies the most useful subset of features (columns) in a data table. So-called filter techniques use statistical ranking measures for the correlation of features. Usually a measure is applied to all entities (rows) of a data table. However, the differing contributions of subsets of data entities are masked by statistical aggregation. Feature and entity subset selection are, thus, highly interdependent. Due to the difficulty in visualizing a high-dimensional data table, most feature subset selection algorithms are applied as a black box at the outset of an analysis. Our visualization technique, SmartStripes, allows users to step into the feature subset selection process. It enables the investigation of dependencies and interdependencies between different feature and entity subsets. A user may even choose to control the iterations manually, taking into account the ranking measures, the contributions of different entity subsets, as well as the semantics of the features.

Freie Schlagworte: Business Field: Visual decision support, Research Area: Generalized digital documents, Feature selection, Visual analytics, Multidimensional data visualization, Visualization of multidimensional feature spaces, Mixed initiative
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 12 Nov 2018 11:16
Letzte Änderung: 12 Nov 2018 11:16
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen