TU Darmstadt / ULB / TUbiblio

Differential Methods for Multi-Dimensional Visual Data Analysis

Benger, Werner ; Heinzl, Rene ; Hildenbrand, Dietmar ; Weinkauf, Tino ; Theisel, Holger ; Tschumperlé, David (2011)
Differential Methods for Multi-Dimensional Visual Data Analysis.
doi: 10.1007/978-0-387-92920-0_35
Buchkapitel, Bibliographie

Kurzbeschreibung (Abstract)

Images in scientific visualization are the end-product of data processing. Starting from higher-dimensional datasets, such as scalar-, vector-, tensor- fields given on 2D, 3D, 4D domains, the objective is to reduce this complexity to two-dimensional images comprehensible to the human visual system. Various mathematical fields such as in particular differential geometry, topology (theory of discretized manifolds), differential topology, linear algebra, Geometric Algebra, vectorfield and tensor analysis, and partial differential equations contribute to the data filtering and transformation algorithms used in scientific visualization. The application of differential methods is core to all these fields. The following chapter will provide examples from current research on the application of these mathematical domains to scientific visualization and ultimately generating of images for analysis of multi-dimensional datasets.

Typ des Eintrags: Buchkapitel
Erschienen: 2011
Autor(en): Benger, Werner ; Heinzl, Rene ; Hildenbrand, Dietmar ; Weinkauf, Tino ; Theisel, Holger ; Tschumperlé, David
Art des Eintrags: Bibliographie
Titel: Differential Methods for Multi-Dimensional Visual Data Analysis
Sprache: Englisch
Publikationsjahr: 2011
Verlag: Springer Science+Business Media
DOI: 10.1007/978-0-387-92920-0_35
Kurzbeschreibung (Abstract):

Images in scientific visualization are the end-product of data processing. Starting from higher-dimensional datasets, such as scalar-, vector-, tensor- fields given on 2D, 3D, 4D domains, the objective is to reduce this complexity to two-dimensional images comprehensible to the human visual system. Various mathematical fields such as in particular differential geometry, topology (theory of discretized manifolds), differential topology, linear algebra, Geometric Algebra, vectorfield and tensor analysis, and partial differential equations contribute to the data filtering and transformation algorithms used in scientific visualization. The application of differential methods is core to all these fields. The following chapter will provide examples from current research on the application of these mathematical domains to scientific visualization and ultimately generating of images for analysis of multi-dimensional datasets.

Freie Schlagworte: Forschungsgruppe Geometric Algebra Computing (GACO), Geometric algebra (GA), Geometric computing, OpenCL
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 12 Nov 2018 11:16
Letzte Änderung: 12 Nov 2018 11:16
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen