TU Darmstadt / ULB / TUbiblio

Automatic Wood Log Segmentation Using Graph Cuts

Gutzeit, Enrico ; Ohl, Stephan ; Voskamp, Jörg ; Kuijper, Arjan ; Urban, Bodo (2011)
Automatic Wood Log Segmentation Using Graph Cuts.
Computer Vision, Imaging and Computer Graphics. Theory and Applications.
doi: 10.1007/978-3-642-25382-9_7
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Segmenting foreground from background automatically is an active field of research. The graph cut approach is one of the promising methods to solve this problem. This approach requires that the weights of the graph are chosen optimally in order to obtain a good segmentation. We address this challenge focusing on the automatic segmentation of wood log images. We present a novel method based on density estimation to obtain information about both foreground and background. With this information the weights in the graph cut method can be set automatically. In order to validate our results, we use four different methods to set these weights. We show that of these approaches, our new method obtains the best results.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2011
Autor(en): Gutzeit, Enrico ; Ohl, Stephan ; Voskamp, Jörg ; Kuijper, Arjan ; Urban, Bodo
Art des Eintrags: Bibliographie
Titel: Automatic Wood Log Segmentation Using Graph Cuts
Sprache: Englisch
Publikationsjahr: 2011
Verlag: Springer, Berlin, Heidelberg, New York
Reihe: Communications in Computer and Information Science; 229
Veranstaltungstitel: Computer Vision, Imaging and Computer Graphics. Theory and Applications
DOI: 10.1007/978-3-642-25382-9_7
Kurzbeschreibung (Abstract):

Segmenting foreground from background automatically is an active field of research. The graph cut approach is one of the promising methods to solve this problem. This approach requires that the weights of the graph are chosen optimally in order to obtain a good segmentation. We address this challenge focusing on the automatic segmentation of wood log images. We present a novel method based on density estimation to obtain information about both foreground and background. With this information the weights in the graph cut method can be set automatically. In order to validate our results, we use four different methods to set these weights. We show that of these approaches, our new method obtains the best results.

Freie Schlagworte: Business Field: Visual decision support, Research Area: Confluence of graphics and vision, Image segmentation, Graph cuts, Foreground extraction, Weight setting, Density estimation
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 12 Nov 2018 11:16
Letzte Änderung: 12 Nov 2018 11:16
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen