TU Darmstadt / ULB / TUbiblio

Visual Analytics Methods for Categoric Spatio-Temporal Data

Landesberger von Antburg, Tatiana ; Bremm, Sebastian ; Andrienko, Natalia ; Andrienko, Gennady ; Tekusová, Maria (2012)
Visual Analytics Methods for Categoric Spatio-Temporal Data.
IEEE Conference on Visual Analytics Science and Technology 2012. Proceedings.
doi: 10.1109/VAST.2012.6400553
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

We focus on visual analysis of space- and time-referenced categorical data, which describe possible states of spatial (geographical) objects or locations and their changes over time. The analysis of these data is difficult as there are only limited possibilities to analyze the three aspects (location, time and category) simultaneously. We present a new approach which interactively combines (a) visualization of categorical changes over time; (b) various spatial data displays; (c) computational techniques for task-oriented selection of time steps. They provide an expressive visualization with regard to either the overall evolution over time or unusual changes. We apply our approach on two use cases demonstrating its usefulness for a wide variety of tasks. We analyze data from movement tracking and meteorologic areas. Using our approach, expected events could be detected and new insights were gained.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2012
Autor(en): Landesberger von Antburg, Tatiana ; Bremm, Sebastian ; Andrienko, Natalia ; Andrienko, Gennady ; Tekusová, Maria
Art des Eintrags: Bibliographie
Titel: Visual Analytics Methods for Categoric Spatio-Temporal Data
Sprache: Englisch
Publikationsjahr: 2012
Verlag: IEEE Press, New York
Veranstaltungstitel: IEEE Conference on Visual Analytics Science and Technology 2012. Proceedings
DOI: 10.1109/VAST.2012.6400553
Kurzbeschreibung (Abstract):

We focus on visual analysis of space- and time-referenced categorical data, which describe possible states of spatial (geographical) objects or locations and their changes over time. The analysis of these data is difficult as there are only limited possibilities to analyze the three aspects (location, time and category) simultaneously. We present a new approach which interactively combines (a) visualization of categorical changes over time; (b) various spatial data displays; (c) computational techniques for task-oriented selection of time steps. They provide an expressive visualization with regard to either the overall evolution over time or unusual changes. We apply our approach on two use cases demonstrating its usefulness for a wide variety of tasks. We analyze data from movement tracking and meteorologic areas. Using our approach, expected events could be detected and new insights were gained.

Freie Schlagworte: Forschungsgruppe Visual Search and Analysis (VISA), Visual analytics, Information visualization, Time series analysis, Spatio-temporal data
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 12 Nov 2018 11:16
Letzte Änderung: 22 Jul 2021 18:31
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen