TU Darmstadt / ULB / TUbiblio

Matrix-Based Visual Correlation Analysis on Large Timeseries Data

Behrisch, Michael ; Davey, James ; Schreck, Tobias ; Keim, Daniel A. ; Kohlhammer, Jörn (2012)
Matrix-Based Visual Correlation Analysis on Large Timeseries Data.
IEEE Conference on Visual Analytics Science and Technology 2012. Proceedings.
doi: 10.1109/VAST.2012.6400549
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

In recent years, the quantity of time series data generated in a wide variety of domains grown consistently. Thus, it is difficult for analysts to process and understand this overwhelming amount of data. In the specific case of time series data another problem arises: time series can be highly interrelated. This problem becomes even more challenging when a set of parameters influences the progression of a time series. However, while most visual analysis techniques support the analysis of short time periods, e.g. one day or one week, they fail to visualize large-scale time series, ranging over one year or more. In our approach we present a time series matrix visualization that tackles this problem. Its primary advantages are that it scales to a large number of time series with different start and end points and allows for the visual comparison / correlation analysis of a set of influencing factors. To evaluate our approach, we applied our technique to a real-world data set, showing the impact of local weather conditions on the efficiency of photovoltaic power plants.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2012
Autor(en): Behrisch, Michael ; Davey, James ; Schreck, Tobias ; Keim, Daniel A. ; Kohlhammer, Jörn
Art des Eintrags: Bibliographie
Titel: Matrix-Based Visual Correlation Analysis on Large Timeseries Data
Sprache: Englisch
Publikationsjahr: 2012
Verlag: IEEE Press, New York
Veranstaltungstitel: IEEE Conference on Visual Analytics Science and Technology 2012. Proceedings
DOI: 10.1109/VAST.2012.6400549
Kurzbeschreibung (Abstract):

In recent years, the quantity of time series data generated in a wide variety of domains grown consistently. Thus, it is difficult for analysts to process and understand this overwhelming amount of data. In the specific case of time series data another problem arises: time series can be highly interrelated. This problem becomes even more challenging when a set of parameters influences the progression of a time series. However, while most visual analysis techniques support the analysis of short time periods, e.g. one day or one week, they fail to visualize large-scale time series, ranging over one year or more. In our approach we present a time series matrix visualization that tackles this problem. Its primary advantages are that it scales to a large number of time series with different start and end points and allows for the visual comparison / correlation analysis of a set of influencing factors. To evaluate our approach, we applied our technique to a real-world data set, showing the impact of local weather conditions on the efficiency of photovoltaic power plants.

Freie Schlagworte: Business Field: Visual decision support, Research Area: Generalized digital documents, Visual analytics, Time series analysis, Matrix representation
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 12 Nov 2018 11:16
Letzte Änderung: 12 Nov 2018 11:16
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen