TU Darmstadt / ULB / TUbiblio

Confidence Map Based Super-resolution Reconstruction

Hakimi, Wissam El ; Wesarg, Stefan (2012)
Confidence Map Based Super-resolution Reconstruction.
Medical Imaging 2012: Image Processing. Part One.
doi: 10.1117/12.911535
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Magnetic Resonance Imaging and Computed Tomography usually provide highly anisotropic image data, so that the resolution in the slice-selection direction is poorer than in the in-plane directions. An isotropic high-resolution image can be reconstructed from two orthogonal scans of the same object. While combining the different data sets, all input data are usually equally weighted, without considering the fidelity level of each input information. In this paper we introduce a novel super-resolution method, which considers the fidelity level of each input data by introducing an adaptive confidence map. Experimental results on simulated and real data sets have shown the improved accuracy of reconstructed images, whose resolution approximate the original in-plane resolution in all directions. The quality of the reconstructed high resolution image was improved for noiseless input data sets, and even in the presence of different noise types with a low peak signal to noise ratio.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2012
Autor(en): Hakimi, Wissam El ; Wesarg, Stefan
Art des Eintrags: Bibliographie
Titel: Confidence Map Based Super-resolution Reconstruction
Sprache: Englisch
Publikationsjahr: 2012
Verlag: SPIE Press, Bellingham
Reihe: Proceedings of SPIE; 8314
Veranstaltungstitel: Medical Imaging 2012: Image Processing. Part One
DOI: 10.1117/12.911535
Kurzbeschreibung (Abstract):

Magnetic Resonance Imaging and Computed Tomography usually provide highly anisotropic image data, so that the resolution in the slice-selection direction is poorer than in the in-plane directions. An isotropic high-resolution image can be reconstructed from two orthogonal scans of the same object. While combining the different data sets, all input data are usually equally weighted, without considering the fidelity level of each input information. In this paper we introduce a novel super-resolution method, which considers the fidelity level of each input data by introducing an adaptive confidence map. Experimental results on simulated and real data sets have shown the improved accuracy of reconstructed images, whose resolution approximate the original in-plane resolution in all directions. The quality of the reconstructed high resolution image was improved for noiseless input data sets, and even in the presence of different noise types with a low peak signal to noise ratio.

Freie Schlagworte: Forschungsgruppe Medical Computing (MECO), Business Field: Visual decision support, Research Area: Confluence of graphics and vision, Super resolution, Image enhancement
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 12 Nov 2018 11:16
Letzte Änderung: 26 Jul 2021 15:28
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen