TU Darmstadt / ULB / TUbiblio

Visual Analytics for Model-based Medical Image Segmentation: Opportunities and Challenges

Landesberger von Antburg, Tatiana ; Bremm, Sebastian ; Kirschner, Matthias ; Wesarg, Stefan ; Kuijper, Arjan (2013)
Visual Analytics for Model-based Medical Image Segmentation: Opportunities and Challenges.
In: Expert Systems with Applications, 40 (12)
doi: 10.1016/j.eswa.2013.03.006
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Segmentation of medical images is a prerequisite in clinical practice. Many segmentation algorithms use statistical shape models. Due to the lack of tools providing prior information on the data, standard models are frequently used. However, they do not necessarily describe the data in an optimal way. Model-based segmentation can be supported by Visual Analytics tools, which give the user a deeper insight into the correspondence between data and model result. Combining both approaches, better models for segmentation of organs in medical images are created. In this work, we identify the main tasks and problems in model-based image segmentation. As a proof of concept, we show that already small visual-interactive extensions can be very beneficial. Based on these results, we present research challenges for Visual Analytics in this area.

Typ des Eintrags: Artikel
Erschienen: 2013
Autor(en): Landesberger von Antburg, Tatiana ; Bremm, Sebastian ; Kirschner, Matthias ; Wesarg, Stefan ; Kuijper, Arjan
Art des Eintrags: Bibliographie
Titel: Visual Analytics for Model-based Medical Image Segmentation: Opportunities and Challenges
Sprache: Englisch
Publikationsjahr: 2013
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Expert Systems with Applications
Jahrgang/Volume einer Zeitschrift: 40
(Heft-)Nummer: 12
DOI: 10.1016/j.eswa.2013.03.006
Kurzbeschreibung (Abstract):

Segmentation of medical images is a prerequisite in clinical practice. Many segmentation algorithms use statistical shape models. Due to the lack of tools providing prior information on the data, standard models are frequently used. However, they do not necessarily describe the data in an optimal way. Model-based segmentation can be supported by Visual Analytics tools, which give the user a deeper insight into the correspondence between data and model result. Combining both approaches, better models for segmentation of organs in medical images are created. In this work, we identify the main tasks and problems in model-based image segmentation. As a proof of concept, we show that already small visual-interactive extensions can be very beneficial. Based on these results, we present research challenges for Visual Analytics in this area.

Freie Schlagworte: Forschungsgruppe Visual Search and Analysis (VISA), Forschungsgruppe Medical Computing (MECO), Business Field: Visual decision support, Research Area: Confluence of graphics and vision, Visual analytics, Medical imaging, Statistical shape models (SSM)
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 12 Nov 2018 11:16
Letzte Änderung: 22 Jul 2021 18:31
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen