TU Darmstadt / ULB / TUbiblio

Topic Modeling for Search and Exploration in Multivariate Research Data Repositories

Scherer, Maximilian ; Landesberger von Antburg, Tatiana ; Schreck, Tobias (2013)
Topic Modeling for Search and Exploration in Multivariate Research Data Repositories.
Research and Advanced Technology for Digital Libraries.
doi: 10.1007/978-3-642-40501-3_39
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Huge amounts of multivariate research data are produced and made publicly available in digital libraries. Little research focused on similarity functions that take multivariate data documents as a whole into account. Such similarity functions are highly beneficial for users, by enabling them to browse and query large collections of multivariate data using nearest-neighbor indexing. In this paper we tackle this challenge and propose a novel similarity function for multivariate data documents based on topic-modeling. Based on a previously developed bag-of-words approach for multivariate data, we can then learn a topic model for a collection of multivariate data documents and represent each document as a mixture of topics. This representation is very suitable for efficient nearest-neighbor indexing and clustering according to the topic distribution of a document. We present a use-case where we apply this approach to retrieval of multivariate data in the field of climate research.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2013
Autor(en): Scherer, Maximilian ; Landesberger von Antburg, Tatiana ; Schreck, Tobias
Art des Eintrags: Bibliographie
Titel: Topic Modeling for Search and Exploration in Multivariate Research Data Repositories
Sprache: Englisch
Publikationsjahr: 2013
Verlag: Springer, Berlin, Heidelberg, New York
Reihe: Lecture Notes in Computer Science (LNCS); 8092
Veranstaltungstitel: Research and Advanced Technology for Digital Libraries
DOI: 10.1007/978-3-642-40501-3_39
Kurzbeschreibung (Abstract):

Huge amounts of multivariate research data are produced and made publicly available in digital libraries. Little research focused on similarity functions that take multivariate data documents as a whole into account. Such similarity functions are highly beneficial for users, by enabling them to browse and query large collections of multivariate data using nearest-neighbor indexing. In this paper we tackle this challenge and propose a novel similarity function for multivariate data documents based on topic-modeling. Based on a previously developed bag-of-words approach for multivariate data, we can then learn a topic model for a collection of multivariate data documents and represent each document as a mixture of topics. This representation is very suitable for efficient nearest-neighbor indexing and clustering according to the topic distribution of a document. We present a use-case where we apply this approach to retrieval of multivariate data in the field of climate research.

Freie Schlagworte: Forschungsgruppe Visual Search and Analysis (VISA), Multivariate data, Content based retrieval, Bag-of-words
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 12 Nov 2018 11:16
Letzte Änderung: 22 Jul 2021 18:31
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen