TU Darmstadt / ULB / TUbiblio

Qualitätsbasierte Informationsfusion auf der Bewertungsebene innerhalb der multimodalen biometrischen Identifikation

Führer, Jan Benedikt (2013):
Qualitätsbasierte Informationsfusion auf der Bewertungsebene innerhalb der multimodalen biometrischen Identifikation.
Darmstadt, TU, Master Thesis, 2013, [Master Thesis]

Abstract

Im Laufe der Zeit haben sich biometrische Erkennungsverfahren als zuverlässiges Mittel zum Zwecke der Zugangskontrolle zu physikalischen und virtuellen Bereichen entwickelt. Die Schwächen unimodaler Systeme werden dabei oft durch multimodale Ansätze verbessert, insbesondere ermöglichen diese einen robusteren Registrierungsprozess, erhöhte Sicherheit gegenüber gefälschten Identitäten und eine höhere Erkennungsgenauigkeit. Die vorliegende Arbeit beschäftigt sich mit der Frage, wie Qualitätsinformationen über die extrahierten Merkmale zu einer weiteren Verbesserung der multimodalen biometrischen Identifikation beitragen können. Dabei liegt die Idee zugrunde, dass Merkmale von höherer Qualität auch eine höhere Zuverlässigkeit im Hinblick auf deren Klassifikation zusichern, diese also stärker in den Entscheidungsprozess eingebunden werden sollten als Merkmale von geringerer Qualität. Zur Überprüfung dieser Annahme wurde ein auf dem Gradientenverfahren basierender Fusionsmechanismus um die Berücksichtigung von Qualitätsinformationen erweitert und dessen Erkennungsperformanz unter verschiedenen Konditionen, darunter im Besonderen das Vorhandensein fehlender Bewertungsmaße, mit dem ursprünglichen Algorithmus verglichen.

Item Type: Master Thesis
Erschienen: 2013
Creators: Führer, Jan Benedikt
Title: Qualitätsbasierte Informationsfusion auf der Bewertungsebene innerhalb der multimodalen biometrischen Identifikation
Language: German
Abstract:

Im Laufe der Zeit haben sich biometrische Erkennungsverfahren als zuverlässiges Mittel zum Zwecke der Zugangskontrolle zu physikalischen und virtuellen Bereichen entwickelt. Die Schwächen unimodaler Systeme werden dabei oft durch multimodale Ansätze verbessert, insbesondere ermöglichen diese einen robusteren Registrierungsprozess, erhöhte Sicherheit gegenüber gefälschten Identitäten und eine höhere Erkennungsgenauigkeit. Die vorliegende Arbeit beschäftigt sich mit der Frage, wie Qualitätsinformationen über die extrahierten Merkmale zu einer weiteren Verbesserung der multimodalen biometrischen Identifikation beitragen können. Dabei liegt die Idee zugrunde, dass Merkmale von höherer Qualität auch eine höhere Zuverlässigkeit im Hinblick auf deren Klassifikation zusichern, diese also stärker in den Entscheidungsprozess eingebunden werden sollten als Merkmale von geringerer Qualität. Zur Überprüfung dieser Annahme wurde ein auf dem Gradientenverfahren basierender Fusionsmechanismus um die Berücksichtigung von Qualitätsinformationen erweitert und dessen Erkennungsperformanz unter verschiedenen Konditionen, darunter im Besonderen das Vorhandensein fehlender Bewertungsmaße, mit dem ursprünglichen Algorithmus verglichen.

Divisions: 20 Department of Computer Science
20 Department of Computer Science > Interactive Graphics Systems
Date Deposited: 12 Nov 2018 11:16
Additional Information:

83 S.

Export:
Suche nach Titel in: TUfind oder in Google
Send an inquiry Send an inquiry

Options (only for editors)

View Item View Item