TU Darmstadt / ULB / TUbiblio

Lazy Nonlinear Diffusion Parameter Estimation

Thürck, Daniel ; Kuijper, Arjan (2013)
Lazy Nonlinear Diffusion Parameter Estimation.
Image Analysis and Processing - ICIAP 2013. Proceedings Part I.
doi: 10.1007/978-3-642-41181-6_22
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Perona-Malik diffusion is a well-known type of nonlinear diffusion that can be used for image segmentation and denoising. The process itself needs an parameter k to decide which edges will be retained and which can be blurred and a stopping time tS. Although there have been investigations on how to set these parameters, especially for regularized diffusion models, as well as different criteria for the optimal stopping time have been suggested, there is yet no quick and conclusive way to estimate both parameters - or to reduce the search space at least. In this paper, we show that Gaussian noise characteristics of an image and the diffusion parameters for an optimal optical result can be estimated based on the image histogram. We demonstrate the effectiveness of lazy learning in this area and develop a custom feature weighting algorithm.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2013
Autor(en): Thürck, Daniel ; Kuijper, Arjan
Art des Eintrags: Bibliographie
Titel: Lazy Nonlinear Diffusion Parameter Estimation
Sprache: Englisch
Publikationsjahr: 2013
Verlag: Springer, Berlin, Heidelberg, New York
Reihe: Lecture Notes in Computer Science (LNCS); 8156
Veranstaltungstitel: Image Analysis and Processing - ICIAP 2013. Proceedings Part I
DOI: 10.1007/978-3-642-41181-6_22
Kurzbeschreibung (Abstract):

Perona-Malik diffusion is a well-known type of nonlinear diffusion that can be used for image segmentation and denoising. The process itself needs an parameter k to decide which edges will be retained and which can be blurred and a stopping time tS. Although there have been investigations on how to set these parameters, especially for regularized diffusion models, as well as different criteria for the optimal stopping time have been suggested, there is yet no quick and conclusive way to estimate both parameters - or to reduce the search space at least. In this paper, we show that Gaussian noise characteristics of an image and the diffusion parameters for an optimal optical result can be estimated based on the image histogram. We demonstrate the effectiveness of lazy learning in this area and develop a custom feature weighting algorithm.

Freie Schlagworte: Image analysis, Image processing, Machine learning, Parameter ranges
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 12 Nov 2018 11:16
Letzte Änderung: 10 Dez 2021 07:23
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen