Thürck, Daniel ; Kuijper, Arjan (2013)
Lazy Nonlinear Diffusion Parameter Estimation.
Image Analysis and Processing - ICIAP 2013. Proceedings Part I.
doi: 10.1007/978-3-642-41181-6_22
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
Perona-Malik diffusion is a well-known type of nonlinear diffusion that can be used for image segmentation and denoising. The process itself needs an parameter k to decide which edges will be retained and which can be blurred and a stopping time tS. Although there have been investigations on how to set these parameters, especially for regularized diffusion models, as well as different criteria for the optimal stopping time have been suggested, there is yet no quick and conclusive way to estimate both parameters - or to reduce the search space at least. In this paper, we show that Gaussian noise characteristics of an image and the diffusion parameters for an optimal optical result can be estimated based on the image histogram. We demonstrate the effectiveness of lazy learning in this area and develop a custom feature weighting algorithm.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2013 |
Autor(en): | Thürck, Daniel ; Kuijper, Arjan |
Art des Eintrags: | Bibliographie |
Titel: | Lazy Nonlinear Diffusion Parameter Estimation |
Sprache: | Englisch |
Publikationsjahr: | 2013 |
Verlag: | Springer, Berlin, Heidelberg, New York |
Reihe: | Lecture Notes in Computer Science (LNCS); 8156 |
Veranstaltungstitel: | Image Analysis and Processing - ICIAP 2013. Proceedings Part I |
DOI: | 10.1007/978-3-642-41181-6_22 |
Kurzbeschreibung (Abstract): | Perona-Malik diffusion is a well-known type of nonlinear diffusion that can be used for image segmentation and denoising. The process itself needs an parameter k to decide which edges will be retained and which can be blurred and a stopping time tS. Although there have been investigations on how to set these parameters, especially for regularized diffusion models, as well as different criteria for the optimal stopping time have been suggested, there is yet no quick and conclusive way to estimate both parameters - or to reduce the search space at least. In this paper, we show that Gaussian noise characteristics of an image and the diffusion parameters for an optimal optical result can be estimated based on the image histogram. We demonstrate the effectiveness of lazy learning in this area and develop a custom feature weighting algorithm. |
Freie Schlagworte: | Image analysis, Image processing, Machine learning, Parameter ranges |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Graphisch-Interaktive Systeme |
Hinterlegungsdatum: | 12 Nov 2018 11:16 |
Letzte Änderung: | 10 Dez 2021 07:23 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |