TU Darmstadt / ULB / TUbiblio

Image Processing by Minimising Lp Norms

Kuijper, Arjan (2013)
Image Processing by Minimising Lp Norms.
In: Pattern Recognition and Image Analysis, 23 (2)
doi: 10.1134/S105466181302003X
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

In this work, we take a novel line of approaches to evolve images. It is motivated by the total variation method, known for its denoising and edge-preserving effect. Our approach generalises the TV method by taking a general Lp norm of the gradients instead of the L¹ in the TV method. We generalise this method in a series of first and second order derivatives in terms of gauge coordinates. This method also incorporates the well-known blurring by a Gaussian filter and the balanced forward-backward diffusion. The method and its properties are briefly discussed. The practical results are visualised on a real-life image, showing the expected behaviour. When a constraint is added that penalises the distance of the results to the input image, one can vary the desired amount of blurring and denoising.

Typ des Eintrags: Artikel
Erschienen: 2013
Autor(en): Kuijper, Arjan
Art des Eintrags: Bibliographie
Titel: Image Processing by Minimising Lp Norms
Sprache: Englisch
Publikationsjahr: 2013
Verlag: Springer
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Pattern Recognition and Image Analysis
Jahrgang/Volume einer Zeitschrift: 23
(Heft-)Nummer: 2
Buchtitel: Pattern Recognition and Image Analysis
DOI: 10.1134/S105466181302003X
Kurzbeschreibung (Abstract):

In this work, we take a novel line of approaches to evolve images. It is motivated by the total variation method, known for its denoising and edge-preserving effect. Our approach generalises the TV method by taking a general Lp norm of the gradients instead of the L¹ in the TV method. We generalise this method in a series of first and second order derivatives in terms of gauge coordinates. This method also incorporates the well-known blurring by a Gaussian filter and the balanced forward-backward diffusion. The method and its properties are briefly discussed. The practical results are visualised on a real-life image, showing the expected behaviour. When a constraint is added that penalises the distance of the results to the input image, one can vary the desired amount of blurring and denoising.

Freie Schlagworte: Image processing, Partial differential equations
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 12 Nov 2018 11:16
Letzte Änderung: 18 Nov 2019 10:59
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen