TU Darmstadt / ULB / TUbiblio

Discrete Deep Structure

Tschirsich, Martin ; Kuijper, Arjan (2013)
Discrete Deep Structure.
Scale Space and Variational Methods in Computer Vision.
doi: 10.1007/978-3-642-38267-3_29
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

The discrete scale space representation L of f is continuous in scale t. A computational investigation of L however must rely on a finite number of sampled scales. There are multiple approaches to sampling L differing in accuracy, runtime complexity and memory usage. One apparent approach is given by the definition of L via discrete convolution with a scale space kernel. The scale space kernel is of infinite domain and must be truncated in order to compute an individual scale, thus introducing truncation errors. A periodic boundary condition for f further complicates the computation. In this case, circular convolution with a Laplacian kernel provides for an elegant but still computationally complex solution. Applied in its eigenspace however, the circular convolution operator reduces to a simple and much less complex scaling transformation. This paper details how to efficiently decompose a scale of L and its derivative Qt L into a sum of eigenimages of the Laplacian circular convolution operator and provides a simple solution of the discretized diffusion equation, enabling for fast and accurate sampling of L.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2013
Autor(en): Tschirsich, Martin ; Kuijper, Arjan
Art des Eintrags: Bibliographie
Titel: Discrete Deep Structure
Sprache: Englisch
Publikationsjahr: 2013
Verlag: Springer, Berlin, Heidelberg, New York
Reihe: Lecture Notes in Computer Science (LNCS); 7893
Veranstaltungstitel: Scale Space and Variational Methods in Computer Vision
DOI: 10.1007/978-3-642-38267-3_29
Kurzbeschreibung (Abstract):

The discrete scale space representation L of f is continuous in scale t. A computational investigation of L however must rely on a finite number of sampled scales. There are multiple approaches to sampling L differing in accuracy, runtime complexity and memory usage. One apparent approach is given by the definition of L via discrete convolution with a scale space kernel. The scale space kernel is of infinite domain and must be truncated in order to compute an individual scale, thus introducing truncation errors. A periodic boundary condition for f further complicates the computation. In this case, circular convolution with a Laplacian kernel provides for an elegant but still computationally complex solution. Applied in its eigenspace however, the circular convolution operator reduces to a simple and much less complex scaling transformation. This paper details how to efficiently decompose a scale of L and its derivative Qt L into a sum of eigenimages of the Laplacian circular convolution operator and provides a simple solution of the discretized diffusion equation, enabling for fast and accurate sampling of L.

Freie Schlagworte: Business Field: Digital society, Research Area: Generalized digital documents, Discrete images, Partial differential equations, Digital image processing, Mathematics
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 12 Nov 2018 11:16
Letzte Änderung: 12 Nov 2018 11:16
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen