TU Darmstadt / ULB / TUbiblio

Anisotropy Correction of Medical Image Data Employing Patch Similarity

Keyhani, Mohammad Hossein ; Hakimi, Wissam El ; Wesarg, Stefan (2013)
Anisotropy Correction of Medical Image Data Employing Patch Similarity.
Proceedings of CBMS 2013.
doi: 10.1109/CBMS.2013.6627822
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

CT or MR image data is typically anisotropic. But, it is desirable to base image processing as well as diagnosis on isotropic image data. In this work, we propose a novel method for correcting anisotropy of 3D image data sets by employing the recurrence of small 2D patches across different scales. We base our method on previous work dealing with super-resolution of single natural 2D images, show the applicability of that approach also to medical images, and extend it to a 3D solution for anisotropy correction. Our results show that the image quality can be significantly improved. For clinical CT and MRI data, we present feedback from the clinical end user.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2013
Autor(en): Keyhani, Mohammad Hossein ; Hakimi, Wissam El ; Wesarg, Stefan
Art des Eintrags: Bibliographie
Titel: Anisotropy Correction of Medical Image Data Employing Patch Similarity
Sprache: Englisch
Publikationsjahr: 2013
Verlag: IEEE, Inc., New York
Veranstaltungstitel: Proceedings of CBMS 2013
DOI: 10.1109/CBMS.2013.6627822
Kurzbeschreibung (Abstract):

CT or MR image data is typically anisotropic. But, it is desirable to base image processing as well as diagnosis on isotropic image data. In this work, we propose a novel method for correcting anisotropy of 3D image data sets by employing the recurrence of small 2D patches across different scales. We base our method on previous work dealing with super-resolution of single natural 2D images, show the applicability of that approach also to medical images, and extend it to a 3D solution for anisotropy correction. Our results show that the image quality can be significantly improved. For clinical CT and MRI data, we present feedback from the clinical end user.

Freie Schlagworte: Forschungsgruppe Medical Computing (MECO), Super resolution, Reconstruction, Anisotropy, Image quality
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 12 Nov 2018 11:16
Letzte Änderung: 26 Jul 2021 15:28
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen