TU Darmstadt / ULB / TUbiblio

Towards a User-Defined Visual-Interactive Definition of Similarity Functions for Mixed Data

Bernard, Jürgen ; Hutter, Marco ; Sessler, David ; Schreck, Tobias ; Behrisch, Michael ; Kohlhammer, Jörn (2014)
Towards a User-Defined Visual-Interactive Definition of Similarity Functions for Mixed Data.
IEEE Conference on Visual Analytics Science and Technology. Proceedings.
doi: 10.1109/VAST.2014.7042503
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

The creation of similarity functions based on visual-interactive user feedback is a promising means to capture the mental similarity notion in the heads of domain experts. In particular, concepts exist where users arrange multivariate data objects on a 2D data landscape in order to learn new similarity functions. While systems that incorporate numerical data attributes have been presented in the past, the remaining overall goal may be to develop systems also for mixed data sets. In this work, we present a feedback model for categorical data which can be used alongside of numerical feedback models in future.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2014
Autor(en): Bernard, Jürgen ; Hutter, Marco ; Sessler, David ; Schreck, Tobias ; Behrisch, Michael ; Kohlhammer, Jörn
Art des Eintrags: Bibliographie
Titel: Towards a User-Defined Visual-Interactive Definition of Similarity Functions for Mixed Data
Sprache: Englisch
Publikationsjahr: 2014
Verlag: IEEE Computer Society, Los Alamitos, Calif.
Veranstaltungstitel: IEEE Conference on Visual Analytics Science and Technology. Proceedings
DOI: 10.1109/VAST.2014.7042503
Kurzbeschreibung (Abstract):

The creation of similarity functions based on visual-interactive user feedback is a promising means to capture the mental similarity notion in the heads of domain experts. In particular, concepts exist where users arrange multivariate data objects on a 2D data landscape in order to learn new similarity functions. While systems that incorporate numerical data attributes have been presented in the past, the remaining overall goal may be to develop systems also for mixed data sets. In this work, we present a feedback model for categorical data which can be used alongside of numerical feedback models in future.

Freie Schlagworte: Business Field: Visual decision support, Business Field: Digital society, Research Area: Computer vision (CV), Research Area: Human computer interaction (HCI), Visual analytics, Information visualization, Similarity measures, Similarity metrics, Similarity search
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 12 Nov 2018 11:16
Letzte Änderung: 12 Nov 2018 11:16
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen