TU Darmstadt / ULB / TUbiblio

Sixth Sense - Air Traffic Control Prediction Scenario Augmented by Sensors

Silva, Nelson ; Settgast, Volker ; Eggeling, Eva ; Grill, Florian ; Zeh, Theodor ; Fellner, Dieter W. (2014)
Sixth Sense - Air Traffic Control Prediction Scenario Augmented by Sensors.
i-KNOW 2014.
doi: 10.1145/2637748.2638441
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

This paper is focused on the fault tolerance of Human Machine Interfaces in the field of air traffic control (ATC) by accepting the overall user's body language as input. We describe ongoing work in progress in the project called Sixth Sense. Interaction patterns are reasoned from the combination of a recommendation and inference engine, the analysis of several graph database relationships and from multiple sensor raw data aggregations. Altogether, these techniques allow us to judge about different possible meanings of the current user's interaction and cognitive state. The results obtained from applying different machine learning techniques will be used to make recommendations and predictions on the user's actions. They are currently monitored and rated by a human supervisor.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2014
Autor(en): Silva, Nelson ; Settgast, Volker ; Eggeling, Eva ; Grill, Florian ; Zeh, Theodor ; Fellner, Dieter W.
Art des Eintrags: Bibliographie
Titel: Sixth Sense - Air Traffic Control Prediction Scenario Augmented by Sensors
Sprache: Englisch
Publikationsjahr: 2014
Verlag: ACM, New York
Reihe: ACM International Conference Proceedings Series; 889
Veranstaltungstitel: i-KNOW 2014
DOI: 10.1145/2637748.2638441
Kurzbeschreibung (Abstract):

This paper is focused on the fault tolerance of Human Machine Interfaces in the field of air traffic control (ATC) by accepting the overall user's body language as input. We describe ongoing work in progress in the project called Sixth Sense. Interaction patterns are reasoned from the combination of a recommendation and inference engine, the analysis of several graph database relationships and from multiple sensor raw data aggregations. Altogether, these techniques allow us to judge about different possible meanings of the current user's interaction and cognitive state. The results obtained from applying different machine learning techniques will be used to make recommendations and predictions on the user's actions. They are currently monitored and rated by a human supervisor.

Freie Schlagworte: Business Field: Visual decision support, Research Area: Human computer interaction (HCI), Forschungsgruppe Semantic Models, Immersive Systems (SMIS), Inference, Mental maps, Sensor fusion, Machine learning, Expert systems, Asynchronous transfer mode (ATM), Human factors, Experiments, Verification
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 12 Nov 2018 11:16
Letzte Änderung: 04 Feb 2022 12:39
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen