TU Darmstadt / ULB / TUbiblio

Image-Difference Prediction: From Color to Spectral

Le Moan, Steven ; Urban, Philipp (2014)
Image-Difference Prediction: From Color to Spectral.
In: IEEE Transactions on Image Processing, 23 (5)
doi: 10.1109/TIP.2014.2311373
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

We propose a new strategy to evaluate the quality of multi and hyperspectral images, from the perspective of human perception. We define the spectral image difference as the overall perceived difference between two spectral images under a set of specified viewing conditions (illuminants). First, we analyze the stability of seven image-difference features across illuminants, by means of an information-theoretic strategy. We demonstrate, in particular, that in the case of common spectral distortions (spectral gamut mapping, spectral compression, spectral reconstruction), chromatic features vary much more than achromatic ones despite considering chromatic adaptation. Then, we propose two computationally efficient spectral image difference metrics and compare them to the results of a subjective visual experiment. A significant improvement is shown over existing metrics such as the widely used root-mean square error.

Typ des Eintrags: Artikel
Erschienen: 2014
Autor(en): Le Moan, Steven ; Urban, Philipp
Art des Eintrags: Bibliographie
Titel: Image-Difference Prediction: From Color to Spectral
Sprache: Englisch
Publikationsjahr: 2014
Titel der Zeitschrift, Zeitung oder Schriftenreihe: IEEE Transactions on Image Processing
Jahrgang/Volume einer Zeitschrift: 23
(Heft-)Nummer: 5
DOI: 10.1109/TIP.2014.2311373
Kurzbeschreibung (Abstract):

We propose a new strategy to evaluate the quality of multi and hyperspectral images, from the perspective of human perception. We define the spectral image difference as the overall perceived difference between two spectral images under a set of specified viewing conditions (illuminants). First, we analyze the stability of seven image-difference features across illuminants, by means of an information-theoretic strategy. We demonstrate, in particular, that in the case of common spectral distortions (spectral gamut mapping, spectral compression, spectral reconstruction), chromatic features vary much more than achromatic ones despite considering chromatic adaptation. Then, we propose two computationally efficient spectral image difference metrics and compare them to the results of a subjective visual experiment. A significant improvement is shown over existing metrics such as the widely used root-mean square error.

Freie Schlagworte: Business Field: Visual decision support, Research Area: Human computer interaction (HCI), Research Area: Modeling (MOD), Image quality, Color analysis, Color perception, Multispectral images
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 12 Nov 2018 11:16
Letzte Änderung: 12 Nov 2018 11:16
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen