Grabner, Harald ; Ullrich, Torsten ; Fellner, Dieter W. (2014)
Content-based Retrieval of 3D Models using Generative Modeling Techniques.
GCH 2014. Short Papers - Posters.
doi: 10.2312/gch.20141317
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
In this paper we present a novel 3D model retrieval approach based on generative modeling techniques. In our approach generative models are created by domain experts in order to describe 3D model classes. These generative models span a shape space, of which a number of training samples is taken at random. The samples are used to train content-based retrieval methods. With a trained classifier, techniques based on semantic enrichment can be used to index a repository. Furthermore, as our method uses solely generative 3D models in the training phase, it eliminates the cold start problem. We demonstrate the effectiveness of our method by testing it against the Princeton shape benchmark.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2014 |
Autor(en): | Grabner, Harald ; Ullrich, Torsten ; Fellner, Dieter W. |
Art des Eintrags: | Bibliographie |
Titel: | Content-based Retrieval of 3D Models using Generative Modeling Techniques |
Sprache: | Englisch |
Publikationsjahr: | 2014 |
Verlag: | Eurographics Association, Goslar |
Veranstaltungstitel: | GCH 2014. Short Papers - Posters |
DOI: | 10.2312/gch.20141317 |
Kurzbeschreibung (Abstract): | In this paper we present a novel 3D model retrieval approach based on generative modeling techniques. In our approach generative models are created by domain experts in order to describe 3D model classes. These generative models span a shape space, of which a number of training samples is taken at random. The samples are used to train content-based retrieval methods. With a trained classifier, techniques based on semantic enrichment can be used to index a repository. Furthermore, as our method uses solely generative 3D models in the training phase, it eliminates the cold start problem. We demonstrate the effectiveness of our method by testing it against the Princeton shape benchmark. |
Freie Schlagworte: | Business Field: Digital society, Research Area: Modeling (MOD), Forschungsgruppe Semantic Models, Immersive Systems (SMIS), Computer graphics, Information systems, Content based retrieval, Knowledge representation, Scene analysis, Object recognition, Generative modeling |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Graphisch-Interaktive Systeme |
Hinterlegungsdatum: | 12 Nov 2018 11:16 |
Letzte Änderung: | 04 Feb 2022 12:39 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |