TU Darmstadt / ULB / TUbiblio

MOERA: Mobility-agnostic Online Resource Allocation for Edge Computing

Wang, Lin ; Jiao, Lei ; Li, Jun ; Gedeon, Julien ; Mühlhäuser, Max (2019)
MOERA: Mobility-agnostic Online Resource Allocation for Edge Computing.
In: IEEE Transactions on Mobile Computing, 18 (8)
doi: 10.1109/TMC.2018.2867520
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

To better support emerging interactive mobile applications such as those VR-/AR-based, cloud computing is quickly evolving into a new computing paradigm called edge computing. Edge computing has the promise to bring cloud resources to the network edge to augment the capability of mobile devices in close proximity to the user. One big challenge in edge computing is the efficient allocation and adaptation of edge resources in the presence of high dynamics imposed by user mobility. This paper provides a formal study of this problem. By characterizing a variety of static and dynamic performance measures with a comprehensive cost model, we formulate the online edge resource allocation problem with a mixed nonlinear optimization problem. We propose MOERA, a mobility-agnostic online algorithm based on the "regularization" technique, which can be used to decompose the problem into separate subproblems with regularized objective functions and solve them using convex programming. Through rigorous analysis we are able to prove that MOERA can guarantee a parameterized competitive ratio, without requiring any a priori knowledge on input. We carry out extensive experiments with various real-world data and show that MOERA can achieve an empirical competitive ratio of less than 1.2, reduces the total cost by 4x compared to static approaches, and outperforms the online greedy one-shot solution by 70%. Moreover, we verify that even being future-agnostic, MOERA can achieve comparable performance to approaches with perfect partial future knowledge. We also discuss practical issues with respect to the implementation of our algorithm in real edge computing systems.

Typ des Eintrags: Artikel
Erschienen: 2019
Autor(en): Wang, Lin ; Jiao, Lei ; Li, Jun ; Gedeon, Julien ; Mühlhäuser, Max
Art des Eintrags: Bibliographie
Titel: MOERA: Mobility-agnostic Online Resource Allocation for Edge Computing
Sprache: Englisch
Publikationsjahr: 1 August 2019
Verlag: IEEE
Titel der Zeitschrift, Zeitung oder Schriftenreihe: IEEE Transactions on Mobile Computing
Jahrgang/Volume einer Zeitschrift: 18
(Heft-)Nummer: 8
DOI: 10.1109/TMC.2018.2867520
Kurzbeschreibung (Abstract):

To better support emerging interactive mobile applications such as those VR-/AR-based, cloud computing is quickly evolving into a new computing paradigm called edge computing. Edge computing has the promise to bring cloud resources to the network edge to augment the capability of mobile devices in close proximity to the user. One big challenge in edge computing is the efficient allocation and adaptation of edge resources in the presence of high dynamics imposed by user mobility. This paper provides a formal study of this problem. By characterizing a variety of static and dynamic performance measures with a comprehensive cost model, we formulate the online edge resource allocation problem with a mixed nonlinear optimization problem. We propose MOERA, a mobility-agnostic online algorithm based on the "regularization" technique, which can be used to decompose the problem into separate subproblems with regularized objective functions and solve them using convex programming. Through rigorous analysis we are able to prove that MOERA can guarantee a parameterized competitive ratio, without requiring any a priori knowledge on input. We carry out extensive experiments with various real-world data and show that MOERA can achieve an empirical competitive ratio of less than 1.2, reduces the total cost by 4x compared to static approaches, and outperforms the online greedy one-shot solution by 70%. Moreover, we verify that even being future-agnostic, MOERA can achieve comparable performance to approaches with perfect partial future knowledge. We also discuss practical issues with respect to the implementation of our algorithm in real edge computing systems.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Telekooperation
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > A: Konstruktionsmethodik
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > A: Konstruktionsmethodik > Teilprojekt A1: Modellierung
Hinterlegungsdatum: 15 Nov 2018 07:21
Letzte Änderung: 28 Sep 2021 09:54
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen