TU Darmstadt / ULB / TUbiblio

Understanding the Scalability of Molecular Simulation using Empirical Performance Modeling

Shudler, Sergei ; Vrabec, Jadran ; Wolf, Felix (2019)
Understanding the Scalability of Molecular Simulation using Empirical Performance Modeling.
7th Workshop on Extreme Scale Programming Tools (ESPT 2018). Dallas, USA (11.-16.11.2018)
doi: 10.1007/978-3-030-17872-7_8
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Molecular dynamics (MD) simulation allows for the study of static and dynamic properties of molecular ensembles at various molecular scales, from monatomics to macromolecules such as proteins and nucleic acids. It has applications in biology, materials science, biochemistry, and biophysics. Recent developments in simulation techniques spurred the emergence of the computational molecular engineering (CME) field, which focuses specifically on the needs of industrial users in engineering. Within CME, the simulation code ms2 allows users to calculate thermodynamic properties of bulk fluids. It is a parallel code that aims to scale the temporal range of the simulation while keeping the execution time minimal. In this paper, we use empirical performance modeling to study the impact of simulation parameters on the execution time. Our approach is a systematic workflow that can be used as a blue-print in other fields that aim to scale their simulation codes. We show that the generated models can help users better understand how to scale the simulation with minimal increase in execution time.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2019
Autor(en): Shudler, Sergei ; Vrabec, Jadran ; Wolf, Felix
Art des Eintrags: Bibliographie
Titel: Understanding the Scalability of Molecular Simulation using Empirical Performance Modeling
Sprache: Englisch
Publikationsjahr: 24 April 2019
Verlag: Springer
Buchtitel: Programming and Performance Visualization Tools: International Workshops
Reihe: Lecture Notes in Computer Science
Band einer Reihe: 11027
Veranstaltungstitel: 7th Workshop on Extreme Scale Programming Tools (ESPT 2018)
Veranstaltungsort: Dallas, USA
Veranstaltungsdatum: 11.-16.11.2018
DOI: 10.1007/978-3-030-17872-7_8
Kurzbeschreibung (Abstract):

Molecular dynamics (MD) simulation allows for the study of static and dynamic properties of molecular ensembles at various molecular scales, from monatomics to macromolecules such as proteins and nucleic acids. It has applications in biology, materials science, biochemistry, and biophysics. Recent developments in simulation techniques spurred the emergence of the computational molecular engineering (CME) field, which focuses specifically on the needs of industrial users in engineering. Within CME, the simulation code ms2 allows users to calculate thermodynamic properties of bulk fluids. It is a parallel code that aims to scale the temporal range of the simulation while keeping the execution time minimal. In this paper, we use empirical performance modeling to study the impact of simulation parameters on the execution time. Our approach is a systematic workflow that can be used as a blue-print in other fields that aim to scale their simulation codes. We show that the generated models can help users better understand how to scale the simulation with minimal increase in execution time.

Freie Schlagworte: DFG|320898076, BMBF|01IH16008D, DoE|DE-SC0015524
Zusätzliche Informationen:

held in conjunction with the International Conference on High Performance Computing, Networking, Storage and Analysis (SC 2018)

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Parallele Programmierung
Zentrale Einrichtungen
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ)
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner
Hinterlegungsdatum: 01 Nov 2018 10:12
Letzte Änderung: 04 Jun 2024 07:12
PPN: 518805921
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen