TU Darmstadt / ULB / TUbiblio

Formulation and convergence of the finite volume method for conservation laws on spacetimes with boundary

Giesselmann, Jan ; LeFloch, Philippe G. (2016)
Formulation and convergence of the finite volume method for conservation laws on spacetimes with boundary.
doi: 10.48550/arXiv.1607.03944
Report, Bibliographie

Kurzbeschreibung (Abstract)

We study nonlinear hyperbolic conservation laws posed on a differential (n+1)-manifold with boundary referred to as a spacetime, and defined from a prescribed flux field of n-forms depending on a parameter (the unknown variable), a class of equations proposed by LeFloch and Okutmustur in 2008. Our main result is a proof of the convergence of the finite volume method for weak solutions satisfying suitable entropy inequalities. A main difference with previous work is that we allow for slices with a boundary and, in addition, introduce a new formulation of the finite volume method involving the notion of total flux functions. Under a natural global hyperbolicity condition on the flux field and the spacetime and by assuming that the spacetime admits a foliation by compact slices with boundary, we establish an existence and uniqueness theory for the initial and boundary value problem, and we prove a contraction property in a geometrically natural L1-type distance.

Typ des Eintrags: Report
Erschienen: 2016
Autor(en): Giesselmann, Jan ; LeFloch, Philippe G.
Art des Eintrags: Bibliographie
Titel: Formulation and convergence of the finite volume method for conservation laws on spacetimes with boundary
Sprache: Englisch
Publikationsjahr: 13 Juli 2016
Verlag: arXiV
Reihe: Analysis of PDEs
Auflage: 1. Version
DOI: 10.48550/arXiv.1607.03944
URL / URN: http://arxiv.org/abs/1607.03944
Kurzbeschreibung (Abstract):

We study nonlinear hyperbolic conservation laws posed on a differential (n+1)-manifold with boundary referred to as a spacetime, and defined from a prescribed flux field of n-forms depending on a parameter (the unknown variable), a class of equations proposed by LeFloch and Okutmustur in 2008. Our main result is a proof of the convergence of the finite volume method for weak solutions satisfying suitable entropy inequalities. A main difference with previous work is that we allow for slices with a boundary and, in addition, introduce a new formulation of the finite volume method involving the notion of total flux functions. Under a natural global hyperbolicity condition on the flux field and the spacetime and by assuming that the spacetime admits a foliation by compact slices with boundary, we establish an existence and uniqueness theory for the initial and boundary value problem, and we prove a contraction property in a geometrically natural L1-type distance.

Zusätzliche Informationen:

Preprint; Erscheint auch in: Numerische Mathematik 144 (4), S. 751-785, Springer Verlag

Fachbereich(e)/-gebiet(e): 04 Fachbereich Mathematik
04 Fachbereich Mathematik > Numerik und wissenschaftliches Rechnen
Hinterlegungsdatum: 16 Okt 2018 11:14
Letzte Änderung: 29 Mai 2024 10:13
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen