TU Darmstadt / ULB / TUbiblio

Exploiting Anti-monotonicity of Multi-label Evaluation Measures for Inducing Multi-label Rules

Rapp, Michael ; Loza Mencía, Johannes
Hrsg.: Phung, Dinh ; Tseng, Vincent S. ; Webb, Geoffrey I. ; Ho, Bao ; Ganji, Mohadeseh ; Rashidi, Lida (2018)
Exploiting Anti-monotonicity of Multi-label Evaluation Measures for Inducing Multi-label Rules.
Advances in Knowledge Discovery and Data Mining. Cham
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Exploiting dependencies between labels is considered to be crucial for multi-label classification. Rules are able to expose label dependencies such as implications, subsumptions or exclusions in a human-comprehensible and interpretable manner. However, the induction of rules with multiple labels in the head is particularly challenging, as the number of label combinations which must be taken into account for each rule grows exponentially with the number of available labels. To overcome this limitation, algorithms for exhaustive rule mining typically use properties such as anti-monotonicity or decomposability in order to prune the search space. In the present paper, we examine whether commonly used multi-label evaluation metrics satisfy these properties and therefore are suited to prune the search space for multi-label heads.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2018
Herausgeber: Phung, Dinh ; Tseng, Vincent S. ; Webb, Geoffrey I. ; Ho, Bao ; Ganji, Mohadeseh ; Rashidi, Lida
Autor(en): Rapp, Michael ; Loza Mencía, Johannes
Art des Eintrags: Bibliographie
Titel: Exploiting Anti-monotonicity of Multi-label Evaluation Measures for Inducing Multi-label Rules
Sprache: Deutsch
Publikationsjahr: 2018
Ort: Cham
Verlag: Springer International Publishing
Veranstaltungstitel: Advances in Knowledge Discovery and Data Mining
Veranstaltungsort: Cham
Kurzbeschreibung (Abstract):

Exploiting dependencies between labels is considered to be crucial for multi-label classification. Rules are able to expose label dependencies such as implications, subsumptions or exclusions in a human-comprehensible and interpretable manner. However, the induction of rules with multiple labels in the head is particularly challenging, as the number of label combinations which must be taken into account for each rule grows exponentially with the number of available labels. To overcome this limitation, algorithms for exhaustive rule mining typically use properties such as anti-monotonicity or decomposability in order to prune the search space. In the present paper, we examine whether commonly used multi-label evaluation metrics satisfy these properties and therefore are suited to prune the search space for multi-label heads.

Fachbereich(e)/-gebiet(e): DFG-Graduiertenkollegs
DFG-Graduiertenkollegs > Graduiertenkolleg 1994 Adaptive Informationsaufbereitung aus heterogenen Quellen
Hinterlegungsdatum: 23 Okt 2018 13:56
Letzte Änderung: 23 Okt 2018 13:56
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen