TU Darmstadt / ULB / TUbiblio

Maximum magnitude forecast in hydraulic stimulation based on clustering and size distribution of early microseismicity

Afshari Moein, M. ; Tormann, T. ; Valley, B. ; Wiemer, S. (2018)
Maximum magnitude forecast in hydraulic stimulation based on clustering and size distribution of early microseismicity.
In: Geophysical Research Letters
doi: 10.1029/2018GL077609
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

We interpreted the spatial clustering and size distribution of induced microseismicity observed during the stimulation of an enhanced geothermal system beneath Basel by comparison with scale‐invariant synthetic data derived from discrete fracture network models. We evaluated microseimic specific influential factors including the effect of hypocentral location uncertainties, existence of a fractured zone and repeating events on the observed spatial organization. Using a dual power‐law model originally developed in the context of discrete fracture network modeling, we developed theoretically the relationships among spatial clustering and magnitude distributions. We applied this model to the Basel data set and showed that the spatial clustering characteristics presented stationary properties during the hydraulic stimulation. Based on this observation, we proposed a statistical seismicity model calibrated on the scaling of early stimulation spatial patterns that is capable of forecasting the maximum magnitude of induced events with increasing injection time and stimulated volume.

Typ des Eintrags: Artikel
Erschienen: 2018
Autor(en): Afshari Moein, M. ; Tormann, T. ; Valley, B. ; Wiemer, S.
Art des Eintrags: Bibliographie
Titel: Maximum magnitude forecast in hydraulic stimulation based on clustering and size distribution of early microseismicity
Sprache: Englisch
Publikationsjahr: 6 Juli 2018
Verlag: AGU
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Geophysical Research Letters
DOI: 10.1029/2018GL077609
URL / URN: https://doi.org/10.1029/2018GL077609
Kurzbeschreibung (Abstract):

We interpreted the spatial clustering and size distribution of induced microseismicity observed during the stimulation of an enhanced geothermal system beneath Basel by comparison with scale‐invariant synthetic data derived from discrete fracture network models. We evaluated microseimic specific influential factors including the effect of hypocentral location uncertainties, existence of a fractured zone and repeating events on the observed spatial organization. Using a dual power‐law model originally developed in the context of discrete fracture network modeling, we developed theoretically the relationships among spatial clustering and magnitude distributions. We applied this model to the Basel data set and showed that the spatial clustering characteristics presented stationary properties during the hydraulic stimulation. Based on this observation, we proposed a statistical seismicity model calibrated on the scaling of early stimulation spatial patterns that is capable of forecasting the maximum magnitude of induced events with increasing injection time and stimulated volume.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften > Fachgebiet Angewandte Geothermie
Hinterlegungsdatum: 04 Okt 2018 12:06
Letzte Änderung: 04 Okt 2018 12:06
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen