Hark, Rhaban ; Ghanmi, Mohamed ; Kar, Sounak ; Richerzhagen, Nils ; Rizk, Amr ; Steinmetz, Ralf (2018)
Representative Measurement Point Selection to Monitor Software-defined Networks.
The 43nd IEEE Conference on Local Computer Networks (LCN). Chicago, USA
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
Network state monitoring is a fundamental task for network management. However, determining the full network state in Software defined Networks requires disproportionately too many resources. This stems from the discrepancy between the established methods used for state monitoring compared to the varying contribution in terms of information obtained from every additionally monitored network node. This relationship may even become more complicated depending on the network state information of interest. One solution to overcome bottlenecks by reducing the overall monitoring footprint is the use of spatial sampling, which allows the estimation of the network state based a fraction of the overall state. In this work, we propose schemes to place a small number of measurement points in the SDN network to maximize the obtained network state information. Considering different conditions, we utilize routing information and graph theoretic centrality metrics, respectively, to estimate the amount of information a node provides. Based on this knowledge, we, furthermore develop a mechanism to place multiple measurement points while avoiding redundant measurements. For demonstration purpose, we use the developed mechanisms to estimate the Flow Size Distribution in SDN environments. An emulative evaluation taking several known topologies shows the effectiveness of spatial sampling using the proposed scheme.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2018 |
Autor(en): | Hark, Rhaban ; Ghanmi, Mohamed ; Kar, Sounak ; Richerzhagen, Nils ; Rizk, Amr ; Steinmetz, Ralf |
Art des Eintrags: | Bibliographie |
Titel: | Representative Measurement Point Selection to Monitor Software-defined Networks |
Sprache: | Englisch |
Publikationsjahr: | Oktober 2018 |
Ort: | Chicago, USA |
Verlag: | IEEE |
Veranstaltungstitel: | The 43nd IEEE Conference on Local Computer Networks (LCN) |
Veranstaltungsort: | Chicago, USA |
URL / URN: | https://www.ieeelcn.org/Program_technical.html |
Kurzbeschreibung (Abstract): | Network state monitoring is a fundamental task for network management. However, determining the full network state in Software defined Networks requires disproportionately too many resources. This stems from the discrepancy between the established methods used for state monitoring compared to the varying contribution in terms of information obtained from every additionally monitored network node. This relationship may even become more complicated depending on the network state information of interest. One solution to overcome bottlenecks by reducing the overall monitoring footprint is the use of spatial sampling, which allows the estimation of the network state based a fraction of the overall state. In this work, we propose schemes to place a small number of measurement points in the SDN network to maximize the obtained network state information. Considering different conditions, we utilize routing information and graph theoretic centrality metrics, respectively, to estimate the amount of information a node provides. Based on this knowledge, we, furthermore develop a mechanism to place multiple measurement points while avoiding redundant measurements. For demonstration purpose, we use the developed mechanisms to estimate the Flow Size Distribution in SDN environments. An emulative evaluation taking several known topologies shows the effectiveness of spatial sampling using the proposed scheme. |
Freie Schlagworte: | monitor placement, software-defined networking, flow size distribution |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik > Multimedia Kommunikation DFG-Sonderforschungsbereiche (inkl. Transregio) DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > B: Adaptionsmechanismen DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > B: Adaptionsmechanismen > Teilprojekt B1: Monitoring und Analyse DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > B: Adaptionsmechanismen > Teilprojekt B4: Planung |
Hinterlegungsdatum: | 03 Aug 2018 09:28 |
Letzte Änderung: | 03 Aug 2018 09:29 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |