TU Darmstadt / ULB / TUbiblio

Representative Measurement Point Selection to Monitor Software-defined Networks

Hark, Rhaban ; Ghanmi, Mohamed ; Kar, Sounak ; Richerzhagen, Nils ; Rizk, Amr ; Steinmetz, Ralf (2018)
Representative Measurement Point Selection to Monitor Software-defined Networks.
The 43nd IEEE Conference on Local Computer Networks (LCN). Chicago, USA
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Network state monitoring is a fundamental task for network management. However, determining the full network state in Software defined Networks requires disproportionately too many resources. This stems from the discrepancy between the established methods used for state monitoring compared to the varying contribution in terms of information obtained from every additionally monitored network node. This relationship may even become more complicated depending on the network state information of interest. One solution to overcome bottlenecks by reducing the overall monitoring footprint is the use of spatial sampling, which allows the estimation of the network state based a fraction of the overall state. In this work, we propose schemes to place a small number of measurement points in the SDN network to maximize the obtained network state information. Considering different conditions, we utilize routing information and graph theoretic centrality metrics, respectively, to estimate the amount of information a node provides. Based on this knowledge, we, furthermore develop a mechanism to place multiple measurement points while avoiding redundant measurements. For demonstration purpose, we use the developed mechanisms to estimate the Flow Size Distribution in SDN environments. An emulative evaluation taking several known topologies shows the effectiveness of spatial sampling using the proposed scheme.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2018
Autor(en): Hark, Rhaban ; Ghanmi, Mohamed ; Kar, Sounak ; Richerzhagen, Nils ; Rizk, Amr ; Steinmetz, Ralf
Art des Eintrags: Bibliographie
Titel: Representative Measurement Point Selection to Monitor Software-defined Networks
Sprache: Englisch
Publikationsjahr: Oktober 2018
Ort: Chicago, USA
Verlag: IEEE
Veranstaltungstitel: The 43nd IEEE Conference on Local Computer Networks (LCN)
Veranstaltungsort: Chicago, USA
URL / URN: https://www.ieeelcn.org/Program_technical.html
Kurzbeschreibung (Abstract):

Network state monitoring is a fundamental task for network management. However, determining the full network state in Software defined Networks requires disproportionately too many resources. This stems from the discrepancy between the established methods used for state monitoring compared to the varying contribution in terms of information obtained from every additionally monitored network node. This relationship may even become more complicated depending on the network state information of interest. One solution to overcome bottlenecks by reducing the overall monitoring footprint is the use of spatial sampling, which allows the estimation of the network state based a fraction of the overall state. In this work, we propose schemes to place a small number of measurement points in the SDN network to maximize the obtained network state information. Considering different conditions, we utilize routing information and graph theoretic centrality metrics, respectively, to estimate the amount of information a node provides. Based on this knowledge, we, furthermore develop a mechanism to place multiple measurement points while avoiding redundant measurements. For demonstration purpose, we use the developed mechanisms to estimate the Flow Size Distribution in SDN environments. An emulative evaluation taking several known topologies shows the effectiveness of spatial sampling using the proposed scheme.

Freie Schlagworte: monitor placement, software-defined networking, flow size distribution
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik > Multimedia Kommunikation
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > B: Adaptionsmechanismen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > B: Adaptionsmechanismen > Teilprojekt B1: Monitoring und Analyse
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > B: Adaptionsmechanismen > Teilprojekt B4: Planung
Hinterlegungsdatum: 03 Aug 2018 09:28
Letzte Änderung: 03 Aug 2018 09:29
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen