TU Darmstadt / ULB / TUbiblio

From metallic glasses to nanocrystals: Molecular dynamics simulations on the crossover from glass-like to grain-boundary-mediated deformation behaviour

Brink, Tobias ; Albe, Karsten (2018)
From metallic glasses to nanocrystals: Molecular dynamics simulations on the crossover from glass-like to grain-boundary-mediated deformation behaviour.
In: Acta Materialia, 156
doi: 10.1016/j.actamat.2018.06.036
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Nanocrystalline metals contain a large fraction of high-energy grain boundaries, which may be considered as glassy phases. Consequently, with decreasing grain size, a crossover in the deformation behaviour of nanocrystals to that of metallic glasses has been proposed. Here, we study this crossover using molecular dynamics simulations on bulk glasses, glass–crystal nanocomposites, and nanocrystals of Cu64Zr36 with varying crystalline volume fractions induced by long-time thermal annealing. We find that the grain boundary phase behaves like a metallic glass under constraint from the abutting crystallites. The transition from glass-like to grain-boundary-mediated plasticity can be classified into three regimes: (1) For low crystalline volume fractions, the system resembles a glass–crystal composite and plastic flow is localised in the amorphous phase; (2) with increasing crystalline volume fraction, clusters of crystallites become jammed and the mechanical response depends critically on the relaxation state of the glassy grain boundaries; (3) at grain sizes >= 10nm, the system is jammed completely, prohibiting pure grain-boundary plasticity and instead leading to co-deformation. We observe an inverse Hall–Petch effect only in the second regime when the grain boundary is not deeply relaxed. Experimental results with different grain boundary states are therefore not directly comparable in this regime.

Typ des Eintrags: Artikel
Erschienen: 2018
Autor(en): Brink, Tobias ; Albe, Karsten
Art des Eintrags: Bibliographie
Titel: From metallic glasses to nanocrystals: Molecular dynamics simulations on the crossover from glass-like to grain-boundary-mediated deformation behaviour
Sprache: Englisch
Publikationsjahr: 26 Juni 2018
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Acta Materialia
Jahrgang/Volume einer Zeitschrift: 156
DOI: 10.1016/j.actamat.2018.06.036
URL / URN: https://doi.org/10.1016/j.actamat.2018.06.036
Kurzbeschreibung (Abstract):

Nanocrystalline metals contain a large fraction of high-energy grain boundaries, which may be considered as glassy phases. Consequently, with decreasing grain size, a crossover in the deformation behaviour of nanocrystals to that of metallic glasses has been proposed. Here, we study this crossover using molecular dynamics simulations on bulk glasses, glass–crystal nanocomposites, and nanocrystals of Cu64Zr36 with varying crystalline volume fractions induced by long-time thermal annealing. We find that the grain boundary phase behaves like a metallic glass under constraint from the abutting crystallites. The transition from glass-like to grain-boundary-mediated plasticity can be classified into three regimes: (1) For low crystalline volume fractions, the system resembles a glass–crystal composite and plastic flow is localised in the amorphous phase; (2) with increasing crystalline volume fraction, clusters of crystallites become jammed and the mechanical response depends critically on the relaxation state of the glassy grain boundaries; (3) at grain sizes >= 10nm, the system is jammed completely, prohibiting pure grain-boundary plasticity and instead leading to co-deformation. We observe an inverse Hall–Petch effect only in the second regime when the grain boundary is not deeply relaxed. Experimental results with different grain boundary states are therefore not directly comparable in this regime.

Freie Schlagworte: Metallic glass, Nanocomposite, Nanocrystalline metals, Grain boundaries, Molecular dynamics simulations
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung
Zentrale Einrichtungen
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ)
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner
Hinterlegungsdatum: 24 Jul 2018 10:11
Letzte Änderung: 24 Jul 2018 10:23
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen