Bauerdick, Christoph ; Helfert, Mark ; Petruschke, Lars ; Sossenheimer, Johannes ; Abele, Eberhard (2018)
An Automated Procedure for Workpiece Quality Monitoring Based on Machine Drive-Based Signals in Machine Tools.
In: Procedia CIRP, 51st CIRP Conference on Manufacturing Systems, Stockholm (Sweden), Elsevier B.V., 72
doi: 10.1016/j.procir.2018.03.245
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Currently, more and more cyber-physical systems that constantly collect a variety of data are introduced into production lines. This data is often not completely evaluated, even though it could provide new approaches to significantly increase the productivity, flexibility as well as resource and energy efficiency of the production. This paper presents a fully automated procedure to collect and analyze machine drive-based signals of a programmable logic controller. The goal is to derive a workpiece flaw diagnosis from the processed raw data of the machine tool and examine the influence of cutting parameters on the diagnosis and tool wear. In order to conduct this multi-sensor-analysis, the signals of the machine drives are measured at the frequency inverter and evaluated using a script, which is integrated in a monitoring software. It is shown that the cutting parameters have a strong influence on tool wear and the accuracy of the diagnosis.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2018 |
Autor(en): | Bauerdick, Christoph ; Helfert, Mark ; Petruschke, Lars ; Sossenheimer, Johannes ; Abele, Eberhard |
Art des Eintrags: | Bibliographie |
Titel: | An Automated Procedure for Workpiece Quality Monitoring Based on Machine Drive-Based Signals in Machine Tools |
Sprache: | Englisch |
Publikationsjahr: | 2018 |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Procedia CIRP, 51st CIRP Conference on Manufacturing Systems, Stockholm (Sweden), Elsevier B.V. |
Jahrgang/Volume einer Zeitschrift: | 72 |
DOI: | 10.1016/j.procir.2018.03.245 |
URL / URN: | https://doi.org/10.1016/j.procir.2018.03.245 |
Kurzbeschreibung (Abstract): | Currently, more and more cyber-physical systems that constantly collect a variety of data are introduced into production lines. This data is often not completely evaluated, even though it could provide new approaches to significantly increase the productivity, flexibility as well as resource and energy efficiency of the production. This paper presents a fully automated procedure to collect and analyze machine drive-based signals of a programmable logic controller. The goal is to derive a workpiece flaw diagnosis from the processed raw data of the machine tool and examine the influence of cutting parameters on the diagnosis and tool wear. In order to conduct this multi-sensor-analysis, the signals of the machine drives are measured at the frequency inverter and evaluated using a script, which is integrated in a monitoring software. It is shown that the cutting parameters have a strong influence on tool wear and the accuracy of the diagnosis. |
Freie Schlagworte: | Quality; Monitoring; Tool wear; Data analysis |
Fachbereich(e)/-gebiet(e): | 16 Fachbereich Maschinenbau 16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW) 16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW) > Umweltgerechte Produktion (am 01.07.2018 umbenannt in ETA Energietechnologien und Anwendung in der Produktion) |
Hinterlegungsdatum: | 03 Jul 2018 09:19 |
Letzte Änderung: | 05 Jul 2018 08:39 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |