TU Darmstadt / ULB / TUbiblio

Concatenated logic functions using nanofluidic diodes with all-electrical inputs and outputs

Gomez, Vicente ; Ramirez, Patricio ; Cervera, Javier ; Ali, Mubarak ; Nasir, Saima ; Ensinger, Wolfgang ; Mafe, Salvador (2018)
Concatenated logic functions using nanofluidic diodes with all-electrical inputs and outputs.
In: Electrochemistry Communications, 88
doi: 10.1016/j.elecom.2018.01.016
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Nanopore-based logical schemes in ionic solutions typically involve single gates and chemical inputs. The design of computer-like functions requires the consecutive concatenation of several gates and the use of electrical potentials and currents to facilitate the downstream transfer of electrochemical information. We have demonstrated the robust operation of concatenated logic functions using biomimetic nanofluidic diodes based on single pore membranes. To this end, we have implemented first the logic functions AND and OR with combinations of single nanopores using all-electrical input and output signals. The concatenation of these gates allows the output of the OR gate to act as one of the inputs of the AND gate, giving an Enabled-OR logic function. Also, the operation of the OR gate connected with a solid-state transistor, working as a signal inverter, gives a NOR gate. These hybrid electrochemical circuits allow a variety of real time logic functions because of the robust electrical coupling between ionic solutions and electronic elements.

Typ des Eintrags: Artikel
Erschienen: 2018
Autor(en): Gomez, Vicente ; Ramirez, Patricio ; Cervera, Javier ; Ali, Mubarak ; Nasir, Saima ; Ensinger, Wolfgang ; Mafe, Salvador
Art des Eintrags: Bibliographie
Titel: Concatenated logic functions using nanofluidic diodes with all-electrical inputs and outputs
Sprache: Englisch
Publikationsjahr: März 2018
Verlag: Elsevier Science Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Electrochemistry Communications
Jahrgang/Volume einer Zeitschrift: 88
DOI: 10.1016/j.elecom.2018.01.016
URL / URN: https://doi.org/10.1016/j.elecom.2018.01.016
Kurzbeschreibung (Abstract):

Nanopore-based logical schemes in ionic solutions typically involve single gates and chemical inputs. The design of computer-like functions requires the consecutive concatenation of several gates and the use of electrical potentials and currents to facilitate the downstream transfer of electrochemical information. We have demonstrated the robust operation of concatenated logic functions using biomimetic nanofluidic diodes based on single pore membranes. To this end, we have implemented first the logic functions AND and OR with combinations of single nanopores using all-electrical input and output signals. The concatenation of these gates allows the output of the OR gate to act as one of the inputs of the AND gate, giving an Enabled-OR logic function. Also, the operation of the OR gate connected with a solid-state transistor, working as a signal inverter, gives a NOR gate. These hybrid electrochemical circuits allow a variety of real time logic functions because of the robust electrical coupling between ionic solutions and electronic elements.

Freie Schlagworte: Nanofluidic diode, Electrochemical logic functions, Signal transduction
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialanalytik
Hinterlegungsdatum: 27 Jun 2018 07:51
Letzte Änderung: 27 Jun 2018 07:51
PPN:
Sponsoren: P.R., J. C., and S. M. acknowledge the support from the Ministry of Economic Affairs and Competitiveness and FEDER (project MAT2015-65011-P)., M.A., S.N. and W.E. acknowledge the funding from the Hessen State Ministry of Higher Education, Research and the Arts, Germany, under the LOEWE project iNAPO.
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen