TU Darmstadt / ULB / TUbiblio

Using Social Media to Estimate the Audience Sizes of Public Events for Crisis Management and Emergency Care

Felka, Patrick ; Sterz, Artur ; Hinz, Oliver ; Freisleben, Bernd (2018)
Using Social Media to Estimate the Audience Sizes of Public Events for Crisis Management and Emergency Care.
International Conference for Smart Health (ICSH).
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Public events such as soccer games, concerts, or street festivals attract large crowds of visitors. In an emergency situation, estimations about current events and their numbers of visitors are important to be able to react early and effectively by performing adequate countermeasures. Previous research has proposed ap-proaches to detect events like accidents and catastrophes by relying on user-generated content and reporting event-related information. To be proactive in case of an emergency, it is important to know what is happening in direct proximity, even if it is not yet affected by the catastrophe. Therefore, information about on-going events and numbers of visitors in the surrounding environment is indis-pensable. We develop a system design that allows collecting and merging event-related information from social media to provide estimations of the audience siz-es. We illustrate the potential of our approach by estimating the number of visi-tors of soccer games, fairs, street festivals, music festivals, and concerts, and by comparing it to the real numbers of visitors. Our results indicate that matching event-related user-generated content leads to improvements of the estimations. Finally, we demonstrate the usefulness of the system in a recent crisis scenario.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2018
Autor(en): Felka, Patrick ; Sterz, Artur ; Hinz, Oliver ; Freisleben, Bernd
Art des Eintrags: Bibliographie
Titel: Using Social Media to Estimate the Audience Sizes of Public Events for Crisis Management and Emergency Care
Sprache: Englisch
Publikationsjahr: 2018
Veranstaltungstitel: International Conference for Smart Health (ICSH)
Kurzbeschreibung (Abstract):

Public events such as soccer games, concerts, or street festivals attract large crowds of visitors. In an emergency situation, estimations about current events and their numbers of visitors are important to be able to react early and effectively by performing adequate countermeasures. Previous research has proposed ap-proaches to detect events like accidents and catastrophes by relying on user-generated content and reporting event-related information. To be proactive in case of an emergency, it is important to know what is happening in direct proximity, even if it is not yet affected by the catastrophe. Therefore, information about on-going events and numbers of visitors in the surrounding environment is indis-pensable. We develop a system design that allows collecting and merging event-related information from social media to provide estimations of the audience siz-es. We illustrate the potential of our approach by estimating the number of visi-tors of soccer games, fairs, street festivals, music festivals, and concerts, and by comparing it to the real numbers of visitors. Our results indicate that matching event-related user-generated content leads to improvements of the estimations. Finally, we demonstrate the usefulness of the system in a recent crisis scenario.

Freie Schlagworte: C5E,
Fachbereich(e)/-gebiet(e): DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > B: Adaptionsmechanismen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > B: Adaptionsmechanismen > Teilprojekt B3: Adaptionsökonomie
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > C: Kommunikationsmechanismen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > C: Kommunikationsmechanismen > Teilprojekt C5: Kontextzentrische Sicht
Hinterlegungsdatum: 19 Jun 2018 10:39
Letzte Änderung: 19 Jun 2018 10:39
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen