TU Darmstadt / ULB / TUbiblio

Near-Wall Thermal Processes in an Inclined Impinging Jet: Analysis of Heat Transport and Entropy Generation Mechanisms

Ries, Florian ; Li, Yongxiang ; Klingenberg, Dario ; Nishad, Kaushal ; Janicka, J. ; Sadiki, Amsini (2018)
Near-Wall Thermal Processes in an Inclined Impinging Jet: Analysis of Heat Transport and Entropy Generation Mechanisms.
In: Energies, 2018, 11 (6)
doi: 10.3390/en11061354
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

In this work, near-wall thermal transport processes and entropy generation mechanisms in a turbulent jet impinging on a 45∘ -inclined heated surface are investigated using a direct numerical simulation (DNS). The objectives are to analyze the subtle mechanisms of heat transport in the vicinity of an inclined impinged wall, to determine the causes of irreversibilities that are responsible for the reduction of performance of impingement cooling applications and to provide a comprehensive dataset for model development and validation. Results for near-wall thermal characteristics including heat fluxes are analyzed. An entropy production map is provided from the second law analysis. The following main outcomes can be drawn from this study: (1) the location of peak heat transfer occurs not directly at the stagnation point; instead, it is slightly shifted towards the compression side of the jet, while at this region, the heat is transported counter to the temperature gradient; (2) turbulent thermal and fluid flow transport processes around the stagnation point are considerably different from those found in other near-wall-dominated flows and are strongly non-equilibrium in nature; (3) heat fluxes appear highly anisotropic especially in the vicinity of the impinged wall; (4) in particular, the heated wall acts as a strong source of irreversibility for both entropy production related to viscous dissipation and to heat conduction. All these findings imply that a careful design of the impinged plate is particularly important in order to use energy in such a thermal arrangement effectively. Finally, this study confirms that the estimation of the turbulent part of the entropy production based on turbulence dissipation rates in non-reacting, non-isothermal fluid flows represents a reliable approximate approach within the second law analysis, likewise in the context of computationally less expensive simulation techniques like RANS and/or LES.

Typ des Eintrags: Artikel
Erschienen: 2018
Autor(en): Ries, Florian ; Li, Yongxiang ; Klingenberg, Dario ; Nishad, Kaushal ; Janicka, J. ; Sadiki, Amsini
Art des Eintrags: Zweitveröffentlichung
Titel: Near-Wall Thermal Processes in an Inclined Impinging Jet: Analysis of Heat Transport and Entropy Generation Mechanisms
Sprache: Englisch
Publikationsjahr: 2018
Publikationsdatum der Erstveröffentlichung: 2018
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Energies
Jahrgang/Volume einer Zeitschrift: 11
(Heft-)Nummer: 6
DOI: 10.3390/en11061354
URL / URN: https://doi.org/10.3390/en11061354
Herkunft: Zweitveröffentlichung aus gefördertem Golden Open Access
Kurzbeschreibung (Abstract):

In this work, near-wall thermal transport processes and entropy generation mechanisms in a turbulent jet impinging on a 45∘ -inclined heated surface are investigated using a direct numerical simulation (DNS). The objectives are to analyze the subtle mechanisms of heat transport in the vicinity of an inclined impinged wall, to determine the causes of irreversibilities that are responsible for the reduction of performance of impingement cooling applications and to provide a comprehensive dataset for model development and validation. Results for near-wall thermal characteristics including heat fluxes are analyzed. An entropy production map is provided from the second law analysis. The following main outcomes can be drawn from this study: (1) the location of peak heat transfer occurs not directly at the stagnation point; instead, it is slightly shifted towards the compression side of the jet, while at this region, the heat is transported counter to the temperature gradient; (2) turbulent thermal and fluid flow transport processes around the stagnation point are considerably different from those found in other near-wall-dominated flows and are strongly non-equilibrium in nature; (3) heat fluxes appear highly anisotropic especially in the vicinity of the impinged wall; (4) in particular, the heated wall acts as a strong source of irreversibility for both entropy production related to viscous dissipation and to heat conduction. All these findings imply that a careful design of the impinged plate is particularly important in order to use energy in such a thermal arrangement effectively. Finally, this study confirms that the estimation of the turbulent part of the entropy production based on turbulence dissipation rates in non-reacting, non-isothermal fluid flows represents a reliable approximate approach within the second law analysis, likewise in the context of computationally less expensive simulation techniques like RANS and/or LES.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-74680
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet für Energie- und Kraftwerkstechnik (EKT)
16 Fachbereich Maschinenbau > Fachgebiet Simulation reaktiver Thermo-Fluid Systeme (STFS)
Hinterlegungsdatum: 17 Jun 2018 19:55
Letzte Änderung: 11 Feb 2020 14:35
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen