Kandziora, J. ; Schiedek, Thomas ; Sakaguchi-Söder, Kaori (2018)
An optimised extraction method of fluoranthene from micro-plastics
using accelerated solvent extraction (ASE).
Sixth International Marine Debris Conference (6IMDC). San Diego, USA (12.03.2018-16.03.2018)
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
Microplastics (MPs) are a group of anthropogenic contaminants with a high persistence in the environment. In order to determine the ecotoxicological impact of microplastic (MP), it is necessary to understand the nature and extent of chemicals that travel a long distance with MPs in the sea. However, currently no harmonized analytical methods are available to extract MPs from the environmental matrix as well as to extract pollutants from MPs. Therefore, this paper proposes a reliable method to determine the mass of contaminants adsorbed onto MP using an accelerated solvent extractor (ASE). A series of batch experiments were carried out in the laboratory to charge fluoranthene, a 4-ring polycyclic aromatic hydrocarbons, onto plastic pellets made of three different polymers: polyethylene (PE), polystyrene (PS) and polypropylene (PP). Fluoranthene adsorbed on the pellets was extracted using an ASE 300 (Dionex, Idstein). First results showed that best ASE extraction conditions for PE were at 100° C (at 100 bar) for 5 minutes in two static cycles using isopropanol, leading to an extraction efficiency of approx. 70 - 80%. A similar extraction efficiency was determined for PS at 70°C at 100 bar for 5 minutes in two static cycles using isopropanol. The highest recovery rate of 110 -115% was obtained for PP under the ASE condition at 100°C at 100 bar in 1 static cycle using isopropanol. Further research is needed to extend the analysed toxic pollutants adsorbed onto MPs and to develop a standardised and globally applied methodological approach.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2018 |
Autor(en): | Kandziora, J. ; Schiedek, Thomas ; Sakaguchi-Söder, Kaori |
Art des Eintrags: | Bibliographie |
Titel: | An optimised extraction method of fluoranthene from micro-plastics using accelerated solvent extraction (ASE) |
Sprache: | Englisch |
Publikationsjahr: | 12 März 2018 |
Ort: | San Diego, USA |
Veranstaltungstitel: | Sixth International Marine Debris Conference (6IMDC) |
Veranstaltungsort: | San Diego, USA |
Veranstaltungsdatum: | 12.03.2018-16.03.2018 |
Kurzbeschreibung (Abstract): | Microplastics (MPs) are a group of anthropogenic contaminants with a high persistence in the environment. In order to determine the ecotoxicological impact of microplastic (MP), it is necessary to understand the nature and extent of chemicals that travel a long distance with MPs in the sea. However, currently no harmonized analytical methods are available to extract MPs from the environmental matrix as well as to extract pollutants from MPs. Therefore, this paper proposes a reliable method to determine the mass of contaminants adsorbed onto MP using an accelerated solvent extractor (ASE). A series of batch experiments were carried out in the laboratory to charge fluoranthene, a 4-ring polycyclic aromatic hydrocarbons, onto plastic pellets made of three different polymers: polyethylene (PE), polystyrene (PS) and polypropylene (PP). Fluoranthene adsorbed on the pellets was extracted using an ASE 300 (Dionex, Idstein). First results showed that best ASE extraction conditions for PE were at 100° C (at 100 bar) for 5 minutes in two static cycles using isopropanol, leading to an extraction efficiency of approx. 70 - 80%. A similar extraction efficiency was determined for PS at 70°C at 100 bar for 5 minutes in two static cycles using isopropanol. The highest recovery rate of 110 -115% was obtained for PP under the ASE condition at 100°C at 100 bar in 1 static cycle using isopropanol. Further research is needed to extend the analysed toxic pollutants adsorbed onto MPs and to develop a standardised and globally applied methodological approach. |
Fachbereich(e)/-gebiet(e): | 13 Fachbereich Bau- und Umweltingenieurwissenschaften 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut IWAR - Wasser- und Abfalltechnik, Umwelt- und Raumplanung 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut IWAR - Wasser- und Abfalltechnik, Umwelt- und Raumplanung > Fachgebiet Stoffstrommanagement und Ressourcenwirtschaft |
TU-Projekte: | PTJ|03F0736A|JPI-O Microplastic - |
Hinterlegungsdatum: | 06 Jun 2018 13:43 |
Letzte Änderung: | 12 Mär 2021 11:17 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |