TU Darmstadt / ULB / TUbiblio

Story Cloze Ending Selection Baselines and Data Examination

Mihaylov, Todor ; Frank, Anette (2017)
Story Cloze Ending Selection Baselines and Data Examination.
doi: 10.18653/v1/W17-0913
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

This paper describes two supervised baseline systems for the Story Cloze Test Shared Task (Mostafazadeh et al. 2016). We first build a classifier using features based on word embeddings and semantic similarity computation. We further implement a neural LSTM system with different encoding strategies that try to model the relation between the story and the provided endings. Our experiments show that a model using representation features based on average word embedding vectors over the given story words and the candidate ending sentences words, joint with similarity features between the story and candidate ending representations performed better than the neural models. Our best model achieves an accuracy of 72.42, ranking 3rd in the official evaluation.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2017
Autor(en): Mihaylov, Todor ; Frank, Anette
Art des Eintrags: Bibliographie
Titel: Story Cloze Ending Selection Baselines and Data Examination
Sprache: Deutsch
Publikationsjahr: April 2017
Buchtitel: Proceedings of the Linking Models of Lexical, Sentential and Discourse-level Semantics – Shared Task
DOI: 10.18653/v1/W17-0913
URL / URN: http://aclweb.org/anthology/W17-0913
Zugehörige Links:
Kurzbeschreibung (Abstract):

This paper describes two supervised baseline systems for the Story Cloze Test Shared Task (Mostafazadeh et al. 2016). We first build a classifier using features based on word embeddings and semantic similarity computation. We further implement a neural LSTM system with different encoding strategies that try to model the relation between the story and the provided endings. Our experiments show that a model using representation features based on average word embedding vectors over the given story words and the candidate ending sentences words, joint with similarity features between the story and candidate ending representations performed better than the neural models. Our best model achieves an accuracy of 72.42, ranking 3rd in the official evaluation.

Freie Schlagworte: AIPHES_area_a2
ID-Nummer: TUD-CS-2017-0062
Zusätzliche Informationen:

This paper describes two supervised baseline systems for the Story Cloze Test Shared Task (Mostafazadeh et al. 2016). We first build a classifier using features based on word embeddings and semantic similarity computation. We further implement a neural LSTM system with different encoding strategies that try to model the relation between the story and the provided endings. Our experiments show that a model using representation features based on average word embedding vectors over the given story words and the candidate ending sentences words, joint with similarity features between the story and candidate ending representations performed better than the neural models. Our best model achieves an accuracy of 72.42, ranking 3rd in the official evaluation.

Fachbereich(e)/-gebiet(e): DFG-Graduiertenkollegs
DFG-Graduiertenkollegs > Graduiertenkolleg 1994 Adaptive Informationsaufbereitung aus heterogenen Quellen
Hinterlegungsdatum: 09 Mär 2017 20:28
Letzte Änderung: 28 Sep 2018 15:12
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen