TU Darmstadt / ULB / TUbiblio

Learning to Score System Summaries for Better Content Selection Evaluation

Peyrard, Maxime ; Botschen, Teresa ; Gurevych, Iryna (2017)
Learning to Score System Summaries for Better Content Selection Evaluation.
EMNLP workshop "New Frontiers in Summarization". Copenhagen, Denmark (07.09.2017-07.09.2017)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

The evaluation of summaries is a challenging but crucial task of the summarization field. In this work, we propose to learn an automatic scoring metric based on the human judgements available as part of classical summarization datasets like TAC-2008 and TAC-2009. Any existing automatic scoring metrics can be included as features, the model learns the combination exhibiting the best correlation with human judgments. The reliability of the new metric is tested in a further manual evaluation where we ask humans to evaluate summaries covering the whole scoring spectrum of the metric. We release the trained metric as an open-source tool.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2017
Autor(en): Peyrard, Maxime ; Botschen, Teresa ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: Learning to Score System Summaries for Better Content Selection Evaluation
Sprache: Englisch
Publikationsjahr: September 2017
Ort: Copenhagen, Denmark
Verlag: Association for Computational Linguistics
Buchtitel: Proceedings of the EMNLP workshop "New Frontiers in Summarization"
Veranstaltungstitel: EMNLP workshop "New Frontiers in Summarization"
Veranstaltungsort: Copenhagen, Denmark
Veranstaltungsdatum: 07.09.2017-07.09.2017
URL / URN: http://www.aclweb.org/anthology/W17-4510
Zugehörige Links:
Kurzbeschreibung (Abstract):

The evaluation of summaries is a challenging but crucial task of the summarization field. In this work, we propose to learn an automatic scoring metric based on the human judgements available as part of classical summarization datasets like TAC-2008 and TAC-2009. Any existing automatic scoring metrics can be included as features, the model learns the combination exhibiting the best correlation with human judgments. The reliability of the new metric is tested in a further manual evaluation where we ask humans to evaluate summaries covering the whole scoring spectrum of the metric. We release the trained metric as an open-source tool.

Freie Schlagworte: Natural Language Processing;AIPHES_corpus;AIPHES_area_c3;AIPHES_area_b2
ID-Nummer: TUD-CS-2017-0202
Fachbereich(e)/-gebiet(e): DFG-Graduiertenkollegs
DFG-Graduiertenkollegs > Graduiertenkolleg 1994 Adaptive Informationsaufbereitung aus heterogenen Quellen
Hinterlegungsdatum: 04 Jul 2017 10:32
Letzte Änderung: 02 Jul 2024 10:13
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen